Welcome to LookChem.com Sign In | Join Free

Details

Home > Chemical Encyclopedia > Basic Chemical > Chemical Noun Definition >
 Bioplastic
  • Bioplastic
  • Bioplastics or organic plastics are a form of plastics derived from renewable biomass sources, such as vegetable oil, corn , pea starch, or microbiota, rather than fossil-fuel plastics which are derived from petroleum. Some, but not all, bioplastics are designed to biodegrade. Biodegradable bioplastics are used for disposable items, such as packaging and catering items (crockery, cutlery, pots, bowls, straws). Biodegradable bioplastics are also often used for organic waste bags, where they can be composted together with the food or green waste.

    Plastic types

    Starch-based plastics
    Constituting about 50 percent of the bioplastics market, thermoplastic starch, such as Plastarch Material, currently represents the most important and widely used bioplastic. Pure starch possesses the characteristic of being able to absorb humidity, and is thus being used for the production of drug capsules in the pharmaceutical sector. Flexibiliser and plasticiser such as sorbitol and glycerine are added so the starch can also be processed thermo-plastically. By varying the amounts of these additives, the characteristic of the material can be tailored to specific needs (also called "thermo-plastical starch"). Simple starch plastic can be made at home shown by this method.

    -based plastics
    Cellulose bioplastics are mainly the cellulose esters (cellulose acetate, nitrocellulose...) and their derivatives (celluloid...).

    Some aliphatic polyesters
    The aliphatic biopolyesters are mainly polyhydroxyalkanoates (PHAs) like the poly-3-hydroxybutyrate (PHB), polyhydroxyvalerate (PHV) and polyhydroxyhexanoate PHH.

    Polylactic acid (PLA) plastics
    Polylactic acid (PLA) is a transparent plastic produced from cane sugar or glucose. It not only resembles conventional petrochemical mass plastics (like PE or PP) in its characteristics, but it can also be processed easily on standard equipment that already exists for the production of conventional plastics. PLA and PLA blends generally come in the form of granulates with various properties, and are used in the plastic processing industry for the production of foil, moulds, tins, cups and bottles.

    Poly-3-hydroxybutyrate (PHB)
    The biopolymer poly-3-hydroxybutyrate (PHB) is a polyester produced by certain bacteria processing glucose or starch. Its characteristics are similar to those of the petroplastic polypropylene. The South American sugar industry, for example, has decided to expand PHB production to an industrial scale. PHB is distinguished primarily by its physical characteristics. It produces transparent film at a melting point higher than 130 degrees Celsius, and is biodegradable without residue.

    Polyamide 11 (PA 11)
    PA 11 is a biopolymer derived from natural oil. It is also known under the tradename Rilsan B, commercialized by Arkema. PA 11 belongs to the technical polymers family and is not biodegradable. Its properties are similar to those of PA 12, although emissions of greenhouse gases and consumption of nonrenewable resources are reduced during its production. Its thermal resistance is also superior to that of PA 12. It is used in high-performance applications like automotive fuel lines, pneumatic airbrake tubing, electrical cable antitermite sheathing, flexible oil and gas pipes, control fluid umbilicals, sports shoes, electronic device components, and catheters.

    Bio-derived polyethylene
    The basic building block (monomer) of polyethylene is ethylene. This is just one small chemical step from ethanol, which can be produced by fermentation of agricultural feedstocks such as sugar cane or corn. Bio-derived polyethylene is chemically and physically identical to traditional polyethylene - it does not biodegrade but can be recycled. It can also considerably reduce greenhouse gas emissions. Brazilian chemicals group Braskem claims that using its route from sugar cane ethanol to produce one tonne of polyethylene captures (removes from the environment) 2.5 tonnes of carbon dioxide while the traditional petrochemical route results in emissions of close to 3.5 tonnes. Braskem plans to introduce commercial quantities of its first bio-derived high density polyethylene, used in a packaging such as bottles and tubs, in 2010 and has developed a technology to produce bio-derived butene, required to make the linear low density polethylene types used in film production.

    Genetically modified bioplastics
    Genetic modification (GM) is also a challenge for the bioplastics industry. None of the currently available bioplastics - which can be considered first generation products - require the use of GM crops, although GM corn is the standard feedstock. Looking further ahead, some of the second generation bioplastics manufacturing technologies under development employ the "plant factory" model, using genetically modified crops or genetically modified bacteria to optimise efficiency.


    Prev: Polymer chemistry
    Next: Biopolymer
  • Back】【Close 】【Print】【Add to favorite
Periodic Table
    Hot Products