Welcome to LookChem.com Sign In|Join Free

CAS

  • or

10221-56-4

Post Buying Request

10221-56-4 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

10221-56-4 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 10221-56-4 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 1,0,2,2 and 1 respectively; the second part has 2 digits, 5 and 6 respectively.
Calculate Digit Verification of CAS Registry Number 10221-56:
(7*1)+(6*0)+(5*2)+(4*2)+(3*1)+(2*5)+(1*6)=44
44 % 10 = 4
So 10221-56-4 is a valid CAS Registry Number.

10221-56-4SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 13, 2017

Revision Date: Aug 13, 2017

1.Identification

1.1 GHS Product identifier

Product name bis(pinacolato)diborone

1.2 Other means of identification

Product number -
Other names -

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:10221-56-4 SDS

10221-56-4Relevant articles and documents

Cobalt catalysed reduction of CO2via hydroboration

Tamang, Sem Raj,Findlater, Michael

, p. 8199 - 8203 (2018)

We report an operationally convenient reduction of CO2 to methanol via cobalt catalysed hydroboration which occurs under mild reaction conditions. Addition of NaHBEt3 to Co(acac)3 generates an active hydroboration catalyst, which is proposed to be a “Co-H” species on the basis of infrared spectroscopy. The reduction of CO2 in the presence of various boranes showed that BH3·SMe2 afforded near quantitative conversion (98% NMR yield) to methanol upon hydrolysis.

An efficient nickel catalyst for the reduction of carbon dioxide with a borane

Chakraborty, Sumit,Zhang, Jie,Krause, Jeanette A.,Guan, Hairong

, p. 8872 - 8873 (2010)

Nickel hydride with a diphosphinite-based ligand catalyzes the highly efficient reduction of CO2 with catecholborane, and the hydrolysis of the resulting methoxyboryl species produces CH3OH in good yield. The mechanism involves a nickel formate, formaldehyde, and a nickel methoxide as different reduced stages for CO2. The reaction may also be catalyzed by an air-stable nickel formate.

Cooperative bond activation and catalytic reduction of carbon dioxide at a group 13 metal center

Abdalla, Joseph A. B.,Riddlestone, Ian M.,Tirfoin, Rémi,Aldridge, Simon

, p. 5098 - 5102 (2015)

A single-component ambiphilic system capable of the cooperative activation of protic, hydridic and apolar H-X bonds across a Group 13 metal/activated β-diketiminato (Nacnac) ligand framework is reported. The hydride complex derived from the activation of H2 is shown to be a competent catalyst for the highly selective reduction of CO2 to a methanol derivative. To our knowledge, this process represents the first example of a reduction process of this type catalyzed by a molecular gallium complex. A single-component ambiphilic Group 13 system has been developed, capable of the cooperative activation of protic, hydridic, and apolar H-X bonds. The hydride complex derived from the activation of H2 catalyzes the selective transformation of CO2 to a methanol derivative, representing the first example of such a reduction process catalyzed by a molecular gallium complex.

Zinc hydridotriphenylborates supported by a neutral macrocyclic polyamine

Mukherjee, Debabrata,Wiegand, Ann-Kristin,Spaniol, Thomas P.,Okuda, Jun

, p. 6183 - 6186 (2017)

The zinc hydridotriphenylborates [(L)Zn(TMDS)][HBPh3] and [(L)ZnX][HBPh3] (L = Me4TACD, Me4[12]aneN4; TMDS = N(SiHMe2)2; X = Cl, Br, I) were synthesized by BPh3-mediated β-SiH abstraction and salt metathesis with KHBPh3, respectively. CO2 is rapidly inserted into the B-H bonds. [(L)Zn(TMDS)][HBPh3] catalyzes the hydroboration of polar substrates including CO2.

Acetate-catalyzed hydroboration of CO2 for the selective formation of methanol-equivalent products

Dagorne, Samuel,Dos Santos, Jo?o H. Z.,Jacques, Béatrice,López, Carlos Silva,Nieto Faza, Olalla,Schrekker, Henri S.,Sokolovicz, Yuri C. A.,Specklin, David

, p. 2407 - 2414 (2020)

The present study details the use of the acetate anion, an inexpensive and robust anion, as a CO2 hydroboration catalyst for the selective formation, in most cases, of methanol-equivalent borane products. Thus, upon heating (90 °C, PhBr), tetrabutylammonium, sodium and potassium acetate (1, 2 and 3, respectively) effectively catalyze CO2 hydroboration by pinacolborane (pinB-H) to afford CO2 reduction products HOCOBpin (A), pinBOCH2OBpin (B) and methoxyborane (C). In most cases, high selectivity for product C with higher borane loading and longer reaction time with a TON of up to 970 was observed. The reduction catalysis remains efficient at low catalyst loading (down to 0.1 mol%) and may also be performed under solvent-free conditions using salt 1 as a catalyst, reflecting the excellent robustness and stability of the acetate anion. In control experiments, a 1/1 1/pinB-H mixture was found to react fast with CO2 at room temperature to produce formate species [pinB(O2CH)(OAc)][N(nBu)4] (5) through CO2 insertion into the B-H bond. DFT calculations were also performed to gain insight into the acetate-mediated CO2 hydroboration catalysis, which further supported the crucial role of acetate as a Lewis base in CO2 functionalization catalysis by pinB-H. The DFT-estimated mechanism is in line with experimental data and rationalizes the formation of the most thermodynamically stable reduction product C through acetate catalysis.

Efficient homogeneous catalysis in the reduction of CO2 to CO

Laitar, David S.,Mueller, Peter,Sadighi, Joseph P.

, p. 17196 - 17197 (2005)

The well-defined copper(I) boryl complex [(IPr)Cu(Bpin)] [where IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene, and pin = pinacolate: 2,3-dimethyl-2,3-butanediolate] deoxygenates CO2 rapidly and quantitatively, affording CO and the borate complex [(IPr)Cu(OBpin)]. The boryl may be regenerated by treatment with the diboron compound pinB-Bpin, giving the stable byproduct pinB-O-Bpin. The use of a copper(I) alkoxide precatalyst and stoichiometric diboron reagent results in catalytic reduction of CO2, with high turnover numbers (1000 per Cu) and frequencies (100 per Cu in 1 h) depending on supporting ligand and reaction conditions. Copyright

Frustrated lewis pair inspired carbon dioxide reduction by a ruthenium tris(aminophosphine) complex

Sgro, Michael J.,Stephan, Douglas W.

, p. 11343 - 11345 (2012)

Frustrating ruthenium: The ruthenium complex 1 is shown to bind carbon dioxide or aldehyde in a manner similar to a frustrated Lewis pair. Compound 2 catalyzes the reduction of CO2 in the presence of pinacolborane (HBpin), yielding MeOBpin and O(Bpin)2 (see picture; Ru red, P orange, N green, O light red, C black). Copyright

Conversion of Carbon Dioxide to Methanol Using a C-H Activated Bis(imino)pyridine Molybdenum Hydroboration Catalyst

Pal, Raja,Groy, Thomas L.,Trovitch, Ryan J.

, p. 7506 - 7515 (2015)

Using a multistep synthetic pathway, a bis(imino)pyridine (or pyridine diimine, PDI) molybdenum catalyst for the selective conversion of carbon dioxide into methanol has been developed. Starting from (Ph2PPrPDI)Mo(CO), I2 addition af

Efficient Reduction of Carbon Dioxide to Methanol Equivalents Catalyzed by Two-Coordinate Amido-Germanium(II) and -Tin(II) Hydride Complexes

Hadlington, Terrance J.,Kefalidis, Christos E.,Maron, Laurent,Jones, Cameron

, p. 1853 - 1859 (2017)

The bulky amido-germanium(II) and -tin(II) hydride complexes, L?EH [E = Ge or Sn; L? = -N(Ar?) (SiPri3); Ar? = C6H2Pri{C(H)Ph2}2-4,2,6

Pincer-Supported Gallium Complexes for the Catalytic Hydroboration of Aldehydes, Ketones and Carbon Dioxide

Liu, Lingyu,Lo, Siu-Kwan,Smith, Cory,Goicoechea, Jose M.

supporting information, p. 17379 - 17385 (2021/11/03)

Gallium hydrides stabilised by primary and secondary amines are scarce due to their propensity to eliminate dihydrogen. Consequently, their reactivity has received limited attention. The synthesis of two novel gallium hydride complexes HGa(THF)[ON(H)O] and H2Ga[μ2-ON(H)O]Ga[ON(H)O] ([ON(H)O]2?=N,N-bis(3,5-di-tert-butyl-2-phenoxy)amine) is described and their reactivity towards aldehydes and ketones is explored. These reactions afford alkoxide-bridged dimers through 1,2-hydrogallation reactions. The gallium hydrides can be regenerated through Ga?O/B?H metathesis from the reaction of such dimers with pinacol borane (HBpin) or 9-borabicyclo[3.3.1]nonane (9-BBN). These observations allowed us to target the catalytic reduction of carbonyl substrates (aldehydes, ketones and carbon dioxide) with low catalyst loadings at room temperature.

Hydroboration of aldehydes, ketones and CO2under mild conditions mediated by iron(iii) salen complexes

James, Alexander P.,Lau, Samantha,Provis-Evans, Cei B.,Webster, Ruth L.

supporting information, p. 10696 - 10700 (2021/08/17)

The hydroboration of aldehydes, ketones and CO2is demonstrated using a cheap and air stable [Fe(salen)]2-μ-oxo pre-catalyst with pinacolborane (HBpin) as the reductant under mild conditions. This catalyst system chemoselectively hydroborates aldehydes over ketones and ketones over alkenes. In addition, the [Fe(salen)2]-μ-oxo pre-catalyst shows good efficacy at reducing “wet” CO2with HBpin at room temperature.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 10221-56-4