Welcome to LookChem.com Sign In|Join Free

CAS

  • or

1173371-76-0

Post Buying Request

1173371-76-0 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

1173371-76-0 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 1173371-76-0 includes 10 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 7 digits, 1,1,7,3,3,7 and 1 respectively; the second part has 2 digits, 7 and 6 respectively.
Calculate Digit Verification of CAS Registry Number 1173371-76:
(9*1)+(8*1)+(7*7)+(6*3)+(5*3)+(4*7)+(3*1)+(2*7)+(1*6)=150
150 % 10 = 0
So 1173371-76-0 is a valid CAS Registry Number.

1173371-76-0Relevant articles and documents

Multiple Mechanisms Mapped in Aryl Alkyl Ether Cleavage via Aqueous Electrocatalytic Hydrogenation over Skeletal Nickel

Hegg, Eric L.,Jackson, James E.,Klinger, Grace E.,Saffron, Christopher M.,Zhou, Yuting

supporting information, p. 4037 - 4050 (2020/03/10)

We present here detailed mechanistic studies of electrocatalytic hydrogenation (ECH) in aqueous solution over skeletal nickel cathodes to probe the various paths of reductive catalytic C-O bond cleavage among functionalized aryl ethers relevant to energy science. Heterogeneous catalytic hydrogenolysis of aryl ethers is important both in hydrodeoxygenation of fossil fuels and in upgrading of lignin from biomass. The presence or absence of simple functionalities such as carbonyl, hydroxyl, methyl, or methoxyl groups is known to cause dramatic shifts in reactivity and cleavage selectivity between sp3 C-O and sp2 C-O bonds. Specifically, reported hydrogenolysis studies with Ni and other catalysts have hinted at different cleavage mechanisms for the C-O ether bonds in α-keto and α-hydroxy β-O-4 type aryl ether linkages of lignin. Our new rate, selectivity, and isotopic labeling results from ECH reactions confirm that these aryl ethers undergo C-O cleavage via distinct paths. For the simple 2-phenoxy-1-phenylethane or its alcohol congener, 2-phenoxy-1-phenylethanol, the benzylic site is activated via Ni C-H insertion, followed by beta elimination of the phenoxide leaving group. But in the case of the ketone, 2-phenoxyacetophenone, the polarized carbonyl πsystem apparently binds directly with the electron rich Ni cathode surface without breaking the aromaticity of the neighboring phenyl ring, leading to rapid cleavage. Substituent steric and electronic perturbations across a broad range of β-O-4 type ethers create a hierarchy of cleavage rates that supports these mechanistic ideas while offering guidance to allow rational design of the catalytic method. On the basis of the new insights, the usage of cosolvent acetone is shown to enable control of product selectivity.

Functional group tolerant Kumada-Corriu-Tamao coupling of nonactivated alkyl halides with aryl and heteroaryl nucleophiles: Catalysis by a nickel pincer complex permits the coupling of functionalized Grignard reagents

Vechorkin, Oleg,Proust, Valerie,Hu, Xile

supporting information; experimental part, p. 9756 - 9766 (2011/03/19)

A nickel(II) pincer complex [(MeNN2)NiCl] (1) catalyzes Kumada-Corriu-Tamao cross coupling of nonactivated alkyl halides with aryl and heteroaryl Grignard reagents. The coupling of octyl bromide with phenylmagnesium chloride was used as a test reaction. Using 3 mol % of 1 as the precatalyst and THF as the solvent, and in the presence of a catalytic amount of TMEDA, the coupling product was obtained in a high yield. The reaction conditions could be applied to cross coupling of other primary and secondary alkyl bromides and iodides. The coupling is tolerant to a wide range of functional groups. Therefore, alkyl halides containing ester, amide, ether, thioether, alcohol, pyrrole, indole, furan, nitrile, conjugated enone, and aryl halide moieties were coupled to give high isolated yields of products in which these units stay intact. For the coupling of ester-containing substrates, O-TMEDA is a better additive than TMEDA. The reaction protocol proves to be efficient for the coupling of Knochel-type functionalized Grignard reagents. Thus aryl Grignard reagents containing electron-deficient and/or sensitive ester, nitrile, amide, and CF3 substituents could be successfully coupled to nonactivated and functionalized alkyl iodides. The catalysis is also efficient for the coupling of alkyl iodides with functionalized heteroaryl Grignard reagents, giving rise to pyridine-, thiophene-, pyrazole-, furan-containing molecules with additional functionalities. Concerning the mechanism of the catalysis, [(MeNN2)Ni-(hetero)Ar] was identified as an intermediate, and the activation of alkyl halides was found to take place through a radical-rebound process.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 1173371-76-0