Welcome to LookChem.com Sign In|Join Free

CAS

  • or

16664-45-2

Post Buying Request

16664-45-2 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

16664-45-2 Usage

Chemical structure

1,3-Dimethylphenanthrene is a polycyclic aromatic hydrocarbon (PAH) with a fused benzene and naphthalene ring system and two methyl substituents at the 1 and 3 positions.

Physical appearance

It is a colorless to light yellow solid.

Solubility

Relatively insoluble in water but soluble in organic solvents.

Environmental occurrence

A known environmental pollutant, often found in coal tar, crude oil, and other petroleum products.

Formation

Formed during the incomplete combustion of organic materials, such as wood and fossil fuels.

Health risks

Potential carcinogenic and mutagenic properties, posing health risks to human and environmental systems.

Hazardous substance

Considered to be a hazardous substance due to its potential health risks.

Check Digit Verification of cas no

The CAS Registry Mumber 16664-45-2 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 1,6,6,6 and 4 respectively; the second part has 2 digits, 4 and 5 respectively.
Calculate Digit Verification of CAS Registry Number 16664-45:
(7*1)+(6*6)+(5*6)+(4*6)+(3*4)+(2*4)+(1*5)=122
122 % 10 = 2
So 16664-45-2 is a valid CAS Registry Number.
InChI:InChI=1/C16H14/c1-11-9-12(2)14-8-7-13-5-3-4-6-15(13)16(14)10-11/h3-10H,1-2H3

16664-45-2SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 20, 2017

Revision Date: Aug 20, 2017

1.Identification

1.1 GHS Product identifier

Product name 1,3-DIMETHYLPHENANTHRENE

1.2 Other means of identification

Product number -
Other names Phenanthrene,1,3-dimethyl

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:16664-45-2 SDS

16664-45-2Downstream Products

16664-45-2Relevant articles and documents

-

Belleau

, p. 5441 (1951)

-

A novel and efficient synthesis of phenanthrene derivatives via palladium/norbornadiene-catalyzed domino one-pot reaction

Zhong, Yue,Wu, Wen-Yu,Yu, Shao-Peng,Fan, Tian-Yuan,Yu, Hai-Tao,Li, Nian-Guang,Shi, Zhi-Hao,Tang, Yu-Ping,Duan, Jin-Ao

, p. 291 - 298 (2019)

Herein we report a novel palladium-catalyzed reaction that results in phenanthrene derivatives using aryl iodides, ortho-bromoben-zoyl chlorides and norbornadiene in one pot. This dramatic transformation undergoes ortho-C–H activation, decarbonylation and subsequent a retro-Diels–Alder process. Pleasantly, this protocol has a wider substrate range, shorter reaction times and higher yields of products than previously reported methods.

Au-Cavitands: Size governed arene-alkyne cycloisomerization

Rusali, Lisa E.,Schramm, Michael P.

, (2020/09/15)

With an inwardly directed reactive center and a well-defined binding pocket, Au(I) functionalized resorcin[4]arene cavitands have been shown to catalyze molecular transformations. The reactivity profiles that emerge differ from other Au(I) catalysts. The added constraint of a binding pocket gives rise to the possibility that the substrates might have to fit into the resorcinarene pocket; our hypothesis is that substrates that match the available space have different reaction outcomes than those that do not. Herein we report on the intramolecular cyclization of alkyne-aromatic substrates with variable alkynes and aromatic composition. We see that scaffold size most drastically dictates reactivity, especially when the substrate's features are particularly designed. The results of these experiments add to the veritable goldmine of information about the selectivity in catalysis that cavitands offer.

Exploiting the π-acceptor properties of carbene-stabilized phosphorus centered trications [L3P] 3+: Applications in Pt(II) catalysis

Carreras, Javier,Patil, Mahendra,Thiel, Walter,Alcarazo, Manuel

supporting information, p. 16753 - 16758,6 (2012/12/13)

Reaction of tris(dimethylaminocyclopropenium) substituted phosphine 1 with K2PtCl4 afforded the bench stable complex 3 which upon treatment with Ag[CB11H6Cl6] turned out to be an excellent catalyst for the transformation of a variety of ortho-biaryl substituted alkynes into polycyclic homo- and heteroarenes of different size, shape, and curvature through a 6-endo-dig cyclization. This constitutes the first example ever reported of using a P1-centered trication as ligand in catalysis. The strong π-acceptor character of 1 that derives from its three positive charges substantially increases the intrinsic π-acidity of Pt in complex 1?PtCl2 and dramatically enhances its ability to activate π-systems toward nucleophilic attack. As a consequence, a remarkable acceleration of the model transformation is observed when compared with other classical π-acceptor ligands such as P(OPh)3 or P(C 6F5)3. Moreover, the employment of 1 as ligand also expands the scope of this reaction to previously inaccessible substitution patterns. Kinetic studies and deuterium labeling experiments as well as density functional theory (DFT) calculations were performed in order to explain these findings.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 16664-45-2