Welcome to LookChem.com Sign In|Join Free

CAS

  • or

168123-82-8

Post Buying Request

168123-82-8 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

168123-82-8 Usage

General Description

7-Bromopyrido[2,3-b]pyrazine-2,3(1H,4H)-dione is a chemical compound with the molecular formula C8H4BrN3O2. It is a heterocyclic compound containing a pyrido[2,3-b]pyrazine ring system with a bromine substituent and a dione functional group. It is commonly used as an intermediate in the synthesis of pharmaceuticals and agrochemicals. 7-BROMOPYRIDO[2,3-B]PYRAZINE-2,3(1H,4H)-DIONE has potential applications in the pharmaceutical industry due to its ability to act as an effective building block in the synthesis of various biologically active compounds. Additionally, 7-Bromopyrido[2,3-b]pyrazine-2,3(1H,4H)-dione is also used as a reagent in organic chemical reactions and as a research tool in the study of heterocyclic chemistry.

Check Digit Verification of cas no

The CAS Registry Mumber 168123-82-8 includes 9 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 6 digits, 1,6,8,1,2 and 3 respectively; the second part has 2 digits, 8 and 2 respectively.
Calculate Digit Verification of CAS Registry Number 168123-82:
(8*1)+(7*6)+(6*8)+(5*1)+(4*2)+(3*3)+(2*8)+(1*2)=138
138 % 10 = 8
So 168123-82-8 is a valid CAS Registry Number.
InChI:InChI=1/C7H4BrN3O2/c8-3-1-4-5(9-2-3)11-7(13)6(12)10-4/h1-2H,(H,10,12)(H,9,11,13)

168123-82-8SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 17, 2017

Revision Date: Aug 17, 2017

1.Identification

1.1 GHS Product identifier

Product name 7-Bromopyrido[2,3-b]pyrazine-2,3(1H,4H)-dione

1.2 Other means of identification

Product number -
Other names 7-bromo-1,4-dihydropyrido[2,3-b]pyrazine-2,3-dione

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:168123-82-8 SDS

168123-82-8Downstream Products

168123-82-8Relevant articles and documents

Discovery of a Novel Highly Selective Histamine H4 Receptor Antagonist for the Treatment of Atopic Dermatitis

Ko, Kwangseok,Kim, Hye-Jung,Ho, Pil-Su,Lee, Soon Ok,Lee, Ji-Eun,Min, Cho-Rong,Kim, Yu Chul,Yoon, Ju-Han,Park, Eun-Jung,Kwon, Young-Jin,Yun, Jee-Hun,Yoon, Dong-Oh,Kim, Jung-Sook,Park, Woul-Seong,Oh, Seung-Su,Song, Yu-Mi,Cho, Woon-Ki,Morikawa, Kazumi,Lee, Kyoung-June,Park, Chan-Hee

, p. 2949 - 2961 (2018)

The histamine H4 receptor (H4R), a member of the G-protein coupled receptor family, has been considered as a potential therapeutic target for treating atopic dermatitis (AD). A large number of H4R antagonists have been disclosed, but no efficient agents controlling both pruritus and inflammation in AD have been developed yet. Here, we have discovered a novel class of orally available H4R antagonists showing strong anti-itching and anti-inflammation activity as well as excellent selectivity against off-targets. A pharmacophore-based virtual screening system constructed in-house successfully identified initial hit compound 9, and the subsequent homology model-guided optimization efficiently led us to discover pyrido[2,3-e]tetrazolo[1,5-a]pyrazine analogue 48 as a novel chemotype of a potent and highly selective H4R antagonist. Importantly, orally administered compound 48 exhibits remarkable efficacy on antipruritus and anti-inflammation with a favorable pharmacokinetic (PK) profile in several mouse models of AD. Thus, these data strongly suggest that our compound 48 is a promising clinical candidate for treatment of AD.

Discovery and analgesic evaluation of 8-chloro-1,4-dihydropyrido[2,3- b ]pyrazine-2,3-dione as a novel potent d -amino acid oxidase inhibitor

Xie, Dongsheng,Lu, Jun,Xie, Jin,Cui, Junjun,Li, Teng-Fei,Wang, Yan-Chao,Chen, Yuan,Gong, Nian,Li, Xin-Yan,Fu, Lei,Wang, Yong-Xiang

, p. 19 - 32 (2016/05/11)

A series of 5-azaquinoxaline-2,3-dione derivatives were synthesized and evaluated on d-amino acid oxidase (DAAO) inhibition as potential α-hydroxylactam-based inhibitors. The potent inhibitory activities in vitro suggested that 5-nitrogen could significantly enhance the binding affinity by strengthening relevant hydrogen bond interactions. The analgesic effects of intrathecal and systemic injection of 8-chloro-1,4-dihydropyrido[2,3-b]pyrazine-2,3-dione, a representative molecule of 5-azaquinoxaline-2,3-dione, were investigated in rodents. This research not only confirmed the analgesic effect of the DAAO inhibitors but provided a new class of chemical entities with oral application potential for the treatment of chronic pain and morphine analgesic tolerance.

5-(N-oxyaza)-7-substituted-1,4-dihydroquinoxaline-2,3-diones: Novel, systemically active and broad spectrum antagonists for NMDA/glycine, AMPA, and kainate receptors

Cai, Sui Xiong,Huang, Jin-Cheng,Espitia, Stephen A.,Tran, Minhtam,Ilyin, Victor I.,Hawkinson, Jon E.,Woodward, Richard M.,Weber, Eckard,Keana, John F.W.

, p. 3679 - 3686 (2007/10/03)

A group of 5-aza-7-substituted-1,4-dihydroquinoxaline-2,3-diones (QXs) and the corresponding 5-(N. oxyaza)-7-substituted QXs were prepared and evaluated as antagonists of ionotropic glutamate receptors. The in vitro potency of these QXs was determined by inhibition of [3H]-5,7- dichlorokynurenic acid ([3H]DCKA) binding to N-methyl-D-aspartate (NMDA)/glycine receptors, [3H]-(S)-α-amino-3-hydroxy-5-methyl-4- isoxazolepropionic acid ([3H]AMPA) binding to AMPA receptors, and [3H]kainate ([3H]KA) binding to KA receptors in rat brain membranes. 5-(N- Oxyaza)-QXs 12a-e all have low micromolar or submicromolar potency for NMDA/glycine receptors and low micromolar potencies for AMPA and KA receptors. QXs 12a-e display 2-12-fold selectivity for NMDA/glycine receptors compared to AMPA receptors, and ~2-fold difference between AMPA and KA potency. In contrast to other QXs that either show high selectivity for NMDA (such as ACEA 1021) or AMPA (such as NBQX) receptors, these molecules are broad spectrum antagonists of ionotropic glutamate receptors. 7-Nitro-5-(N- axyaza)-QX (12e) is the most potent inhibitor among 12a-e, having IC50 values of 0.69, 1.3, and 2.4 μM at NMDA, AMPA, and KA receptors, respectively. In functional assays on glutamate receptors expressed in oocytes by rat cerebral cortex poly(A+) RNA, 7-chloro-5-(N-oxyaza)-QX (12a) and 7-nitro-5(N-oxyaza)-QX (12e) have K(b) values of 0.63 and 0.31 μM for NMDA/glycine receptors, and are 6- and 4-fold selective for NMDA over AMPA receptors, respectively. 5-(N-Oxyaza)-7-substituted-QXs 12a-e all have surprisingly high in vivo potency as anticonvulsants in a mouse maximal electroshock-induced seizure (MES) model. 7-Chloro-5-(N-oxyaza)-QX (12a), 7- bromo-5-(N-oxyaza)-QX (12b), and 7-methyl-5-(N-oxyaza)-QX (12c) have ED50 values of 0.82, 0.87, and 0.97 mg/kg iv, respectively. The high in vivo potency of QXs 12a-e is particularly surprising given their low log P values (~ -2.7). Separate studies indicate that QXs 12a and 12e are also active in vive as neuroprotectants and also have antinociceptive activity in animal pain models. In terms of in vivo activity, these 5-(N-oxyaza)-7-substituted- QXs are among the most potent broad spectrum ionotropic glutamate antagonists reported.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 168123-82-8