Welcome to LookChem.com Sign In|Join Free

CAS

  • or

1731-92-6

Post Buying Request

1731-92-6 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

1731-92-6 Usage

Description

METHYL HEPTADECANOATE, also known as the methyl ester of heptadecanoic acid (margaric acid), is a white, wax-like solid with chemical properties that make it insoluble in water but soluble in alcohol and ether. It is a combustible compound and is commonly used as an internal standard in various applications due to its stability and specificity.

Uses

1. Used in Analytical Chemistry:
METHYL HEPTADECANOATE is used as an internal standard for the determination of traces of cyclic fatty acid monomers (CFAM) in oils and animal tissues. It aids in the accurate quantitation of plasma free fatty acids, ensuring reliable results in various analytical procedures.
2. Used in Organic Synthesis:
METHYL HEPTADECANOATE serves as an intermediate in organic synthesis, playing a crucial role in the production of various chemical compounds and materials. Its unique structure and properties make it a valuable component in the synthesis of complex organic molecules.

Check Digit Verification of cas no

The CAS Registry Mumber 1731-92-6 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 1,7,3 and 1 respectively; the second part has 2 digits, 9 and 2 respectively.
Calculate Digit Verification of CAS Registry Number 1731-92:
(6*1)+(5*7)+(4*3)+(3*1)+(2*9)+(1*2)=76
76 % 10 = 6
So 1731-92-6 is a valid CAS Registry Number.
InChI:InChI=1/C18H36O2/c1-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18(19)20-2/h3-17H2,1-2H3

1731-92-6 Well-known Company Product Price

  • Brand
  • (Code)Product description
  • CAS number
  • Packaging
  • Price
  • Detail
  • Sigma-Aldrich

  • (90606)  Methylheptadecanoate  certified reference material, TraceCERT®

  • 1731-92-6

  • 90606-100MG

  • 1,075.23CNY

  • Detail

1731-92-6SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 10, 2017

Revision Date: Aug 10, 2017

1.Identification

1.1 GHS Product identifier

Product name METHYL HEPTADECANOATE

1.2 Other means of identification

Product number -
Other names Heptadecansaeure-methylester

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:1731-92-6 SDS

1731-92-6Relevant articles and documents

Synthesis of mesoporous ZSM-5 zeolites and catalytic cracking of ethanol and oleic acid into light olefins

Zhao, Tingting,Li, Fuwei,Yu, Hongchang,Ding, Shilei,Li, Zhixia,Huang, Xinyuan,Li, Xiang,Wei, Xiaohan,Wang, Zhenlin,Lin, Hongfei

, p. 101 - 110 (2019/02/24)

Conversion of biomass-derived chemicals into light olefins is a promising method to maintain sustainable development of light olefin industry. In this study, three mesoporous ZSM-5 zeolites (MZSM-5-A, MZSM-5-B and MZSM-5-C) with major pore diameter about 4.8 nm, 16 nm and 22 nm were synthesized using a hydrothermal method by utilizing different templates. The catalytic activity of catalysts was studied by catalytic cracking of ethanol and oleic acid. The influence of reaction temperature on conversion and product selectivity was investigated. The characterization of ZSM-5 samples showed that the orders of the external surface area and mesopore volume were MZSM-5-C > MZSM-5-B > MZSM-5-A > conventional HZSM-5. In ethanol to light olefin reaction, MZSM-5-C achieved the highest light olefin yield (318.3 mL g?1) and ethylene selectivity (42.3%) at 400 °C. In oleic acid to light olefin reaction, MZSM-5-B achieved a complete conversion of oleic acid at 500 °C, and obtained the highest light olefin selectivity (38.1%) at 550 °C. The difference may be relevant to the size and chemical structure of feedstock molecular as well as the acidity of catalysts. Regardless of ethanol or oleic acid as feedstock, introduction of mesopore in zeolites significantly enhanced the light olefin yield and selectivity.

Metathesis of renewable polyene feedstocks – Indirect evidences of the formation of catalytically active ruthenium allylidene species

Kovács, Ervin,Sághy, Péter,Turczel, Gábor,Tóth, Imre,Lendvay, Gy?rgy,Domján, Attila,Anastas, Paul T.,Tuba, Róbert

supporting information, p. 213 - 217 (2017/09/12)

Cross-metathesis (CM) of conjugated polyenes, such as 1,6-diphenyl-1,3,5-hexatriene (1) and α-eleostearic acid methyl ester (2) with several olefins, including 1-hexene, dimethyl maleate and cis-stilbene as model compounds has been carried out using (1,3-bis-(2,4,6-trimethylphenyl)-2-imidazolidinylidene)-dichloro(o-isopropoxyphenylmethylene)ruthenium (Hoveyda-Grubbs 2nd generation, HG2) catalyst. The feasibility of these reactions is demonstrated by the observed high conversions and reasonable yields. Thus, regardless of the relatively low electron density, =CH–CH= conjugated units of molecules, including compound 2 as a sustainable, non-foodstuff source, can be utilized as building blocks for the synthesis of various value-added chemicals via olefin metathesis. DFT-studies and the product spectrum of the self-metathesis of 1,6-diphenyl-1,3,5-hexatriene suggest that a Ru η1-allylidene complex is the active species in the reaction.

GC-FID analysis of fatty acids and biological activity of Zanthoxylum rhetsa (Roxb.) DC seed oil

Naik, Rajashri R.

, p. 1929 - 1935 (2016/02/27)

The Fatty acid content and composition of fixed oil from Zanthoxylum rhetsa seeds was determined. The seeds were found to contain about ~19.5% of crude fixed oil on a dry weight basis. Fatty acids were converted into methyl esters and analyzed by GC-FID. Ten fatty acids were identified using GC-FID. The major monounsaturated and saturated fatty acids were oleic acid (41.6 - 43.5%) and palmitic acid (26.8-30.2%) respectively, whereas the α-linolenic acid (12.1 - 12.5%) and linoleic acid (10.0%) were polyunsaturated fatty acid. Stearic acid (5.2 - 6.0%), myristic acid (0.1%), traces of pentadecanoic, heptadecanoic and arachidic acid were also identified. These fatty acids have not been reported earlier from the oil of Z. rhetsa. Fixed oil exhibited significant free radical scavenging activity which was measured using DPPH, and is also known to inhibit the gastrointestinal motility significantly.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 1731-92-6