Welcome to LookChem.com Sign In|Join Free

CAS

  • or

17562-66-2

Post Buying Request

17562-66-2 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

17562-66-2 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 17562-66-2 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 1,7,5,6 and 2 respectively; the second part has 2 digits, 6 and 6 respectively.
Calculate Digit Verification of CAS Registry Number 17562-66:
(7*1)+(6*7)+(5*5)+(4*6)+(3*2)+(2*6)+(1*6)=122
122 % 10 = 2
So 17562-66-2 is a valid CAS Registry Number.

17562-66-2Downstream Products

17562-66-2Relevant articles and documents

10-(4-Phenylpiperazine-1-carbonyl)acridin-9(10H)-ones and related compounds: Synthesis, antiproliferative activity and inhibition of tubulin polymerization

Waltemate, Jana,Ivanov, Igor,Ghasemi, Jahan B.,Aghaee, Elham,Daniliuc, Constantin Gabriel,Müller, Klaus,Prinz, Helge

, (2021)

As part of our continuing search for potent inhibitors of tubulin polymerization, two novel series of 42 10-(4-phenylpiperazine-1-carbonyl)acridin-9(10H)-ones and N-benzoylated acridones were synthesized on the basis of a retrosynthetic approach. All newly synthesized compounds were tested for antiproliferative activity and interaction with tubulin. Several analogs potently inhibited tumor cell growth. Among the compounds tested, 10-(4-(3-methoxyphenyl)piperazine-1-carbonyl)acridin-9(10H)-one (17c) exhibited excellent growth inhibitory effects on 93 tumor cell lines, with an average GI50 value of 5.4 nM. We were able to show that the strong cytotoxic effects are caused by disruption of tubulin polymerization, as supported by the EBI (N,N'-Ethylenebis(iodoacetamide)) assay and the fact that the most potent inhibitors of cancer cell growth turned out to be the most efficacious tubulin polymerization inhibitors. Potencies were nearly comparable or superior to those of the antimitotic reference compounds. Closely related to this, the most active analogs inhibited cell cycling at the G2/M phase at concentrations down to 30 nM and induced apoptosis in K562 leukemia cells. We believe that our work not only proves the excellent suitability of the acridone scaffold for the design of potent tubulin polymerization inhibitors but also enables synthetic access to further potentially interesting N-acylated acridones.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 17562-66-2