Welcome to LookChem.com Sign In|Join Free

CAS

  • or

2051-60-7

Post Buying Request

2051-60-7 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

2051-60-7 Usage

Description

2-ChloroBiphenyl, also known as 2-chlorobiphenyl, is an organic compound that belongs to the class of monochlorobiphenyls. It is characterized by a single chloro substituent at the 2nd position on the biphenyl molecule. 2-CHLOROBIPHENYL is typically found in a powder form and is known for its chemical properties.

Uses

Used in Pharmaceutical Industry:
2-ChloroBiphenyl is used as a TP receptor antagonist for various pharmaceutical applications. It plays a crucial role in the development and formulation of drugs targeting specific receptors, which can be beneficial in treating a range of medical conditions.

Check Digit Verification of cas no

The CAS Registry Mumber 2051-60-7 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 2,0,5 and 1 respectively; the second part has 2 digits, 6 and 0 respectively.
Calculate Digit Verification of CAS Registry Number 2051-60:
(6*2)+(5*0)+(4*5)+(3*1)+(2*6)+(1*0)=47
47 % 10 = 7
So 2051-60-7 is a valid CAS Registry Number.

2051-60-7SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 11, 2017

Revision Date: Aug 11, 2017

1.Identification

1.1 GHS Product identifier

Product name 2-chlorobiphenyl

1.2 Other means of identification

Product number -
Other names O-CHLOROBIPHENYL

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:2051-60-7 SDS

2051-60-7Relevant articles and documents

Synthesis and characterization of palladium nanoparticles immobilized on graphene oxide functionalized with triethylenetetramine or 2,6-diaminopyridine and application for the Suzuki cross-coupling reaction

Boukherroub, Rabah,Mirza-Aghayan, Maryam,Mohammadi, Marzieh

, (2021/11/22)

Graphene oxide (GO) was functionalized with two organic ligands, triethylenetetramine (TETA) or 2,6-diaminopyridine (DAP), followed by palladium nanoparticles (Pd NPs) for the synthesis of Pd NPs/GO-TETA and Pd NPs/GO-DAP nanocomposites, respectively. The two heterogeneous nanocomposites were fully characterized and their efficiency was investigated for C[sbnd]C bond formation for the synthesis of biaryl compounds via the Suzuki cross-coupling reaction of aryl halides with arylboronic acid derivatives. The obtained results indicated that the Pd NPs/GO-TETA nanocomposite was more effective in the Suzuki coupling reaction as compared to Pd NPs/GO-DAP. Thus, the Suzuki cross-coupling reaction of different aryl halides with arylboronic acid derivatives using Pd NPs/GO-TETA nanocomposite catalyst in the presence of Na2CO3 as base in DMF/H2O (1/1) as solvent at 90 °C was carried out to afford the desired biaryl compounds in high to excellent yields (81–100%) and short reaction times (10–90 min). Additionally, Pd NPs/GO-TETA nanocomposite can be recovered and reused for 8 consecutive runs without any apparent loss of its catalytic activity, proving its high stability and potential use in organic transformations.

From the grafting of NHC-based Pd(II) complexes onto TiO2 to the in situ generation of Mott-Schottky heterojunctions: The boosting effect in the Suzuki-Miyaura reaction. Do the evolved Pd NPs act as reservoirs?

De Tovar, Jonathan,Rataboul, Franck,Djakovitch, Laurent

, p. 133 - 147 (2021/05/10)

The assumption that the real active species involved in the Suzuki-Miyaura reaction are homogeneous, heterogeneous or both is often proposed. However a lack of characterization of the true catalytic entities and their monitoring makes assumptions somewhat elusive. Here, with the aim of getting new insights into the formation of active species in the Suzuki-Miyaura reaction, a family of palladium(II) complexes bearing bis(NHC) ligands was synthesized for immobilization at the surface of TiO2. The studies reveal that once the complexes are anchored onto TiO2, the mechanism governing the catalytic reaction is different from that observed for the non-anchored complexes. All complexes evolved to Pd NPs at the surface of TiO2 under reaction conditions and released Pd species in the liquid phase. Also, this reactivity was boosted by the in situ generation of Mott-Schottky heterojunctions, opening new routes towards the design of heterogenized catalysts for their further implementation in reverse-flow reactors.

Palladium nanoparticles encapsulated in polyimide nanofibers: An efficient and recyclable catalyst for coupling reaction

Du, Yijun,Gou, Faliang,Gao, Danning,Liu, Zhifeng,Shao, Linjun,Qi, Chenze

, (2021/09/15)

In this study, palladium-encapsulated poly(amic acid) (Pd@PAA) nanofibers were prepared by electrospinning, followed by thermal imidization to synthesize palladium-encapsulated polyimide (Pd@PI) nanofibers. Scanning electron microscopy (SEM) images confirmed the preparation of uniform and smooth Pd@PAA and Pd@PI nanofibers. Thermogravimetric analysis (TGA) results reveal that the Pd@PI nanofibers possessed excellent thermal stability. The dispersion of palladium nanoparticles in the polyimide nanofibers was characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The catalysis results show that this Pd@PI fibrous catalyst was very efficient to catalyze the cross-coupling reactions of aromatic iodides with n-butyl acrylate (Heck reaction) or phenylboronic acid derivatives (Suzuki reaction) to afford the desired products in good to excellent yields. Moreover, the Pd@PI catalyst could be easily separated and recovered from the reaction mixture by simple filtration due to the regular fibrous structure and reused for 10 times for both Heck and Suzuki reactions without obvious loss of its initial catalytic activity. Thus, the Pd@PI nanofiber catalyst holds great potential in chemical industry in terms of its excellent catalytic activity and stability.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 2051-60-7