Welcome to LookChem.com Sign In|Join Free

CAS

  • or

20766-37-4

Post Buying Request

20766-37-4 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

20766-37-4 Usage

General Description

4-(2-chlorophenyl)but-3-en-2-one, also known as Clonitazene, is an opioid analgesic drug that is structurally related to other opioid drugs such as fentanyl and morphine. It acts as a highly potent and selective agonist for the μ-opioid receptor, producing powerful analgesic effects. Clonitazene has been found to exhibit a long-lasting duration of action and produce strong sedative effects. It is also known to have a high potential for abuse and addiction, making it a controlled substance in many countries. Research on this compound is ongoing to better understand its pharmacological properties and potential medical applications.

Check Digit Verification of cas no

The CAS Registry Mumber 20766-37-4 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 2,0,7,6 and 6 respectively; the second part has 2 digits, 3 and 7 respectively.
Calculate Digit Verification of CAS Registry Number 20766-37:
(7*2)+(6*0)+(5*7)+(4*6)+(3*6)+(2*3)+(1*7)=104
104 % 10 = 4
So 20766-37-4 is a valid CAS Registry Number.
InChI:InChI=1/C10H9ClO/c1-8(12)6-7-9-4-2-3-5-10(9)11/h2-7H,1H3/b7-6+

20766-37-4SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 13, 2017

Revision Date: Aug 13, 2017

1.Identification

1.1 GHS Product identifier

Product name (E)-4-(2-Chloro-phenyl)-but-3-en-2-one

1.2 Other means of identification

Product number -
Other names (E)-4-(2-chlorophenyl)but-3-en-2-one

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:20766-37-4 SDS

20766-37-4Relevant articles and documents

An efficient Pd@Pro-GO heterogeneous catalyst for the α, β-dehydrogenation of saturated aldehyde and ketones

Pan, Gao-Fei,Wang, Zhe,Chang, Yi-Yuan,Hao, Yue,Wang, Yi-Chen,Xing, Rui-Guang

supporting information, (2021/12/30)

An Efficient Pd@Pro-GO heterogeneous catalyst was developed that can promote the α, β-dehydrogenation of saturated aldehyde and ketones in the yield of 73% ? 92% at mild conditions without extra oxidants and additives. Pd@Pro-GO heterogeneous catalyst was synthesized via two steps: firstly, the Pro-GO was obtained by the esterification reaction between graphene oxide (GO) and N-(tert-Butoxycarbonyl)-L-proline (Boc-Pro-OH), followed by removing the protection group tert-Butoxycarbonyl (Boc), which endowed the proline-functionalized GO with both the lewis acid site (COOH) and the bronsted base site (NH), besides, the pyrrolidine of proline also can form imine with aldehydes to activate these substrates; Second, palladium was dispersed on the proline-functionalized GO (Pro-GO) to obtained heterogeneous catalyst Pd@Pro-GO. Mechanistic studies have shown that the Pd@Pro-GO-catalyzed α,β-dehydrogenation of saturated aldehyde and ketones was realized by an improved heterogeneously catalyzed Saegusa oxidation reaction. Based on the obove characteristics, the Pd@Pro-GO will be widely used in the transition metal catalytic field.

Organocatalytic diastereo- And enantioselective oxa-hetero-Diels-Alder reactions of enones with aryl trifluoromethyl ketones for the synthesis of trifluoromethyl-substituted tetrahydropyrans

Pasha, Maira,Tanaka, Fujie

supporting information, p. 9242 - 9250 (2021/11/16)

Tetrahydropyran derivatives are found in bioactives, and introduction of the trifluoromethyl group into molecules often improves biofunctions. Here we report diastereo- and enantioselective oxa-hetero-Diels-Alder reactions catalyzed by amine-based catalyst systems that afford trifluoromethyl-substituted tetrahydropyranones. Catalyst systems and conditions suitable for the reactions to provide the desired diastereomer products with high enantioselectivities were identified, and various trifluoromethyl-substituted tetrahydropyranones were synthesized with high diastereo- and enantioselectivities. Mechanistic investigation suggested that the reactions involve a [4 + 2] cycloaddition pathway, in which the enamine of the enone acts as the diene and the ketone carbonyl group of the aryl trifluoromethyl ketone acts as the dienophile. In this study, tetrahydropyran derivatives with the desired stereochemistry that are difficult to synthesize by previously reported methods were concisely obtained, and the range of tetrahydropyran derivatives that can be synthesized was expanded. This journal is

Dehydrozingerone Inspired Discovery of Potential Broad-Spectrum Fungicidal Agents as Ergosterol Biosynthesis Inhibitors

Song, Xiangmin,Zhu, Xinyue,Li, Ting,Liang, Cai,Zhang, Meng,Shao, Yu,Tao, Jun,Sun, Ranfeng

, p. 11354 - 11363 (2019/10/16)

A series of dehydrozingerone derivatives were synthesized, and their fungicidal activities and action mechanism against Colletotrichum musae were evaluated. The bioassay result showed that most compounds exhibited excellent fungicidal activity in vitro at 50 μg mL-1. Compounds 13, 16, 18, 19, and 27 exhibited broad-spectrum fungicidal activity; especially, compounds 19 and 27 were found to have more potent fungicidal activity than azoxystrobin. The EC50 values of compounds 19 and 27 against Rhizoctonia solani were 0.943 and 0.161 μg mL-1 respectively. Moreover, compound 27 exhibited significant in vitro bactericidal activity against Xanthomonas oryzae pv. oryzae, with an EC50 value of 11.386 μg mL-1, and its curative effect (49.64%) and protection effect (51.74%) on rice bacterial blight disease was equivalent to that of zhongshengmycin (42.90%, 40.80% respectively). Compound 27 could also effectively control gray mold (87.10%, 200 μg mL-1) and rice sheath blight (100%, 200 μg mL-1 82.89%, 100 μg mL-1) in vivo. Preliminary action mechanism study showed that compound 27 mainly acted on the cell membrane and significantly inhibited ergosterol biosynthesis in Colletotrichum musae.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 20766-37-4