Welcome to LookChem.com Sign In|Join Free

CAS

  • or

208580-23-8

Post Buying Request

208580-23-8 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

208580-23-8 Usage

General Description

Ethyl 7-bromo-4-oxo-1,4-dihydroquinoline-3-carboxylate is a chemical compound belonging to the group of quinolines, which are aromatic compounds with two nitrogen atoms. The particular structure of this compound suggests potential uses in organic chemistry and biochemistry, particularly due to the presence of bromine, which can act as a good leaving group in reactions, and the carboxylate ester that could participate in various reactions. Its exact properties such as toxicity, reactivity, or potential applications are not readily available from public databases, suggesting it might not be a widely studied or used compound. Such compounds could play a role in producing various derivatives or could be intermediates in synthetic chemistry.

Check Digit Verification of cas no

The CAS Registry Mumber 208580-23-8 includes 9 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 6 digits, 2,0,8,5,8 and 0 respectively; the second part has 2 digits, 2 and 3 respectively.
Calculate Digit Verification of CAS Registry Number 208580-23:
(8*2)+(7*0)+(6*8)+(5*5)+(4*8)+(3*0)+(2*2)+(1*3)=128
128 % 10 = 8
So 208580-23-8 is a valid CAS Registry Number.

208580-23-8SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 13, 2017

Revision Date: Aug 13, 2017

1.Identification

1.1 GHS Product identifier

Product name Ethyl 7-bromo-4-oxo-1,4-dihydro-3-quinolinecarboxylate

1.2 Other means of identification

Product number -
Other names ethyl 7-bromo-4-oxo-1,4-dihydroquinoline-3-carboxylate

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:208580-23-8 SDS

208580-23-8Relevant articles and documents

3-(Benzo[: D] thiazol-2-yl)-4-aminoquinoline derivatives as novel scaffold topoisomerase i inhibitor via DNA intercalation: Design, synthesis, and antitumor activities

Chen, Nan-Ying,Gu, Zi-Yu,Li, Xiao-Juan,Liao, Hao-Ran,Mo, Dong-Liang,Pan, Cheng-Xue,Su, Gui-Fa,Yuan, Jing-Mei,Zhang, Guo-Hai

, p. 11203 - 11214 (2020/07/15)

Twenty-seven 3-(benzo[d]thiazol-2-yl)-4-aminoquinoline derivatives have been designed and synthesized as topoisomerase I inhibitors. The in vitro anti-proliferation evaluation against four human cancer cell lines (MGC-803, HepG-2, T24, and NCI-H460) and one normal cell line (HL-7702) indicated that most of them exhibited potent cytotoxicity. Among them, 5a was identified as the most promising candidate with a low IC50 value of about 2.20 ± 0.14 and was selected for further exploration. Spectroscopic analyses and agarose-gel electrophoresis assays indicated that 5a could interact with DNA and strongly inhibit topoisomerase I (Topo I). Further screening of the Topo I activity of compounds 5b, 5c, 5e, 5f, 5h, 5i, 5j, 5l, and 5n suggested that some of the compounds might exert quite a different cytotoxicity profile to that of 5a. Molecular modeling studies confirmed that 5a adopts a unique mode to interact with DNA and Topo I. Other molecular mechanistic studies suggested that the treatment of MGC-803 cells with 5a induces S phase arrest, up-regulates the pro-apoptotic protein, down-regulates the anti-apoptotic protein, activates caspase-3, and subsequently induces mitochondrial dysfunction so as to induce cell apoptosis. The in vivo efficiency of 5a was also evaluated on MGC-803 xenograft nude mice and the relative tumor growth inhibition was 42.4percent at 12 mg kg-1 without an obvious loss in the body weight. This journal is

Antiviral activity of 4-oxoquinoline-3-carboxamide derivatives against bovine herpesvirus type 5

Pinto, Ana Maria V.,Leite, José Paulo G.,Marinho, Robson S.S.,Forezi, Luana da S.M.,Batalha, Pedro N.,Boechat, Fernanda da C.S.,Cunha, Anna C.,Silva, David O.,Gama, Ivson L.,Faro, Letícia V.,de Souza, Maria C.B.V.,Paix?o, Izabel Christina P.

, p. 13 - 20 (2020/10/21)

Background: Bovine herpesvirus type 5 is an important agent of meningoencephalitis in cattle and has been identified in outbreaks of bovine neurological disease in several Brazilian states. In recent years, oxoquinoline derivatives have become an important focus in antiviral drug research. Methods: The cytotoxicity and anti BoHV-5RJ42/01 activity of a set of synthetic 4-oxoquinoline derivatives 4a-k were assayed on Madin-Darby Bovine Kidney cell and antiviral activity by plaque reduction assay. Results: The most promising substance (4h) exhibited CC50 and EC50 values of 1,239 μM ±5.5 and 6.0 μM ±1.5, respectively, with an SI =206. Two other compounds 4j (CC50 = 35 μM ±2 and EC50 = 24 μM ±7.0) and 4k (CC50= 55 μM ±2 and EC50 = 24 μM ±5.1) presented similar inhibitory profile and selectivity indexes of 1.4 and 2.9, respectively. The results of the time-of-addition studies revealed expressive reduction of virus production (≥80%) in different stages of virus replication cycle except for compound 4h that slightly inhibited virus yield in the first 2 h post infection, but it showed expressive virus inhibition after this time. Conclusions: All three compounds slightly interact with the virus on the virucidal assay and they are not able to block virus attachment and penetration. Antiviral effect of oxoquinoline 4h was more prominent than acyclovir which leads us to suggest compound 4h as a promising molecule for further anti-BoHV-5 drug design.

Design, synthesis and biological evaluation of new quinoline derivatives as potential antitumor agents

Su, Tong,Zhu, Jiongchang,Sun, Rongqin,Zhang, Huihui,Huang, Qiuhua,Zhang, Xiaodong,Du, Runlei,Qiu, Liqin,Cao, Rihui

, p. 154 - 167 (2019/06/11)

A series of new quinoline derivatives was designed, synthesized and evaluated for their antiproliferative activity. The results demonstrated that compounds 11p, 11s, 11v, 11x and 11y exhibited potent antiproliferative activity with IC50 value of lower than 10 μM against seven human tumor cell lines, and N-(3-methoxyphenyl)-7- (3-phenylpropoxy)quinolin-4-amine 11x was found to be the most potent antiproliferative agent against HCT-116, RKO, A2780 and Hela cell lines with an IC50 value of 2.56, 3.67, 3.46 and 2.71 μM, respectively. The antitumor efficacy of the representative compound 11x in mice was also evaluated, and the results showed that compound 11x effectively inhibited tumor growth and decreased tumor weight in animal models. Further investigation on mechanism of action indicated that compound 11x could inhibit colorectal cancer growth through ATG5-depenent autophagy pathway. Therefore, these quinoline derivatives are a new class of molecules that have the potential to be developed as new antitumor drugs.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 208580-23-8