Welcome to LookChem.com Sign In|Join Free

CAS

  • or

24226-29-7

Post Buying Request

24226-29-7 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

24226-29-7 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 24226-29-7 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 2,4,2,2 and 6 respectively; the second part has 2 digits, 2 and 9 respectively.
Calculate Digit Verification of CAS Registry Number 24226-29:
(7*2)+(6*4)+(5*2)+(4*2)+(3*6)+(2*2)+(1*9)=87
87 % 10 = 7
So 24226-29-7 is a valid CAS Registry Number.

24226-29-7SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 18, 2017

Revision Date: Aug 18, 2017

1.Identification

1.1 GHS Product identifier

Product name methyl 4-(hydroxyamino)benzoate

1.2 Other means of identification

Product number -
Other names N-[(4-methoxycarbonyl)phenyl]hydroxylamine

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:24226-29-7 SDS

24226-29-7Downstream Products

24226-29-7Relevant articles and documents

Selective Reduction of Nitroarenes to Arylamines by the Cooperative Action of Methylhydrazine and a Tris(N-heterocyclic thioamidate) Cobalt(III) Complex

Ioannou, Dimitris I.,Gioftsidou, Dimitra K.,Tsina, Vasiliki E.,Kallitsakis, Michael G.,Hatzidimitriou, Antonios G.,Terzidis, Michael A.,Angaridis, Panagiotis A.,Lykakis, Ioannis N.

supporting information, p. 2895 - 2906 (2021/02/27)

We report an efficient catalytic protocol that chemoselectively reduces nitroarenes to arylamines, by using methylhydrazine as a reducing agent in combination with the easily synthesized and robust catalyst tris(N-heterocyclic thioamidate) Co(III) complex [Co(κS,N-tfmp2S)3], tfmp2S = 4-(trifluoromethyl)-pyrimidine-2-thiolate. A series of arylamines and heterocyclic amines were formed in excellent yields and chemoselectivity. High conversion yields of nitroarenes into the corresponding amines were observed by using polar protic solvents, such as MeOH and iPrOH. Among several hydrogen donors that were examined, methylhydrazine demonstrated the best performance. Preliminary mechanistic investigations, supported by UV-vis and NMR spectroscopy, cyclic voltammetry, and high-resolution mass spectrometry, suggest a cooperative action of methylhydrazine and [Co(κS,N-tfmp2S)3] via a coordination activation pathway that leads to the formation of a reduced cobalt species, responsible for the catalytic transformation. In general, the corresponding N-arylhydroxylamines were identified as the sole intermediates. Nevertheless, the corresponding nitrosoarenes can also be formed as intermediates, which, however, are rapidly transformed into the desired arylamines in the presence of methylhydrazine through a noncatalytic path. On the basis of the observed high chemoselectivity and yields, and the fast and clean reaction processes, the present catalytic system [Co(κS,N-tfmp2S)3]/MeNHNH2 shows promise for the efficient synthesis of aromatic amines that could find various industrial applications.

Catalyst-Free N-Deoxygenation by Photoexcitation of Hantzsch Ester

Cardinale, Luana,Jacobi Von Wangelin, Axel,Konev, Mikhail O.

supporting information, (2020/02/15)

A mild and operationally simple protocol for the deoxygenation of a variety of heteroaryl N-oxides and nitroarenes has been developed. A mixture of substrate and Hantzsch ester is proposed to result in an electron donor-acceptor complex, which upon blue-light irradiation undergoes photoinduced electron transfer between the two reactants to afford the products. N-oxide deoxygenation is demonstrated with 22 examples of functionally diverse substrates, and the chemoselective reduction of nitroarenes to the corresponding hydroxylamines is also shown.

Selective Photoinduced Reduction of Nitroarenes to N-Arylhydroxylamines

Kallitsakis, Michael G.,Ioannou, Dimitris I.,Terzidis, Michael A.,Kostakis, George E.,Lykakis, Ioannis N.

supporting information, p. 4339 - 4343 (2020/06/08)

We report the selective photoinduced reduction of nitroarenes to N-arylhydroxylamines. The present methodology facilitates this transformation in the absence of catalyst or additives and uses only light and methylhydrazine. This noncatalytic photoinduced transformation proceeds with a broad scope, excellent functional-group tolerance, and high yields. The potential of this protocol reflects on the selective and straightforward conversion of two general antibiotics, azomycin and chloramphenicol, to the bioactive hydroxylamine species.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 24226-29-7