Welcome to LookChem.com Sign In|Join Free

CAS

  • or

26397-33-1

Post Buying Request

26397-33-1 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

26397-33-1 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 26397-33-1 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 2,6,3,9 and 7 respectively; the second part has 2 digits, 3 and 3 respectively.
Calculate Digit Verification of CAS Registry Number 26397-33:
(7*2)+(6*6)+(5*3)+(4*9)+(3*7)+(2*3)+(1*3)=131
131 % 10 = 1
So 26397-33-1 is a valid CAS Registry Number.

26397-33-1SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 18, 2017

Revision Date: Aug 18, 2017

1.Identification

1.1 GHS Product identifier

Product name allyloxy radical

1.2 Other means of identification

Product number -
Other names -

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:26397-33-1 SDS

26397-33-1Downstream Products

26397-33-1Relevant articles and documents

Kinetics of the cross reactions of CH3O2 and C2H5O2 radicals with selected peroxy radicals

Villenave, Eric,Lesclaux, Robert

, p. 14372 - 14382 (2007/10/03)

The kinetics of the reactions of selected peroxy radicals (RO2) with CH3O2 and with C2H5O2 have been investigated using two techniques: excimer-laser photolysis and conventional flash photolysis, both coupled with UV absorption spectrometry. Radicals were generated either by photolysis of molecular chlorine in the presence of suitable hydrocarbons or by photolysis of the appropriate alkyl chloride. All such cross-reaction kinetics were investigated at 760 Torr total pressure and room temperature except for the reaction of the allylperoxy radical with CH3O2, for which the rate constant was determined between 291 and 423 K, resulting in the following rate expression: k15 = (2.8 ± 0.7) × 10-13 exp[(515 ± 75)/T] cm3 molecule-1 s-1. Values of (2.0 ± 0.5) × 10-13, (1.5 ± 0.5) × 10-12, (9.0 ± 0.15) × 10-14, -12, (2.5 ± 0.5) × 10-12, and (8.2 ± 0.6) × 10-12 (units of cm3 molecule-1 s-1) have been obtained for the reactions of CH3O2 radicals with C2H5O2, neo-C5H11O2, c-C6H11O2, C6H5CH2O2, CH2ClO2, and CH3C(O)O2, respectively, and (1.0 ± 0.3) × 10-12, (5.6 ± 0.8) × 10-13, (4.0 ± 0.2) × 10-14, and (1.0 ± 0.3) × 10-11 (units of cm3 molecule-1 s-1) for the reactions of C2H5O2 with CH2=CHCH2O2, neo-C5H11O2, c-C6H11O2, and CH3C(O)O2 radicals, respectively. These rate constants were obtained by numerical simulations of the complete reaction mechanisms, which were deduced from the known mechanisms of the corresponding peroxy radical self-reactions. A systematic analysis of propagation of errors was carried out for each reaction to quantify the sensitivity of the cross-reaction rate constant to the parameters used in kinetic simulations. The rate constant for a given cross reaction is generally found to be between the rate constants for the self-reactions of RO2 and CH3O2 (or C2H5O2). However, when the RO2 self-reaction is fast, the cross reaction with CH3O2 (or C2H5O2) is also fast, with similar rate constants for both reactions, suggesting that these particular peroxy radical cross reactions can play a significant role in the chemistry of hydrocarbon oxidation processes in the troposphere and in low-temperature combustion. Relationships between cross-reaction and self-reaction rate constants are suggested.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 26397-33-1