Welcome to LookChem.com Sign In|Join Free

CAS

  • or

27046-29-3

Post Buying Request

27046-29-3 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

27046-29-3 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 27046-29-3 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 2,7,0,4 and 6 respectively; the second part has 2 digits, 2 and 9 respectively.
Calculate Digit Verification of CAS Registry Number 27046-29:
(7*2)+(6*7)+(5*0)+(4*4)+(3*6)+(2*2)+(1*9)=103
103 % 10 = 3
So 27046-29-3 is a valid CAS Registry Number.

27046-29-3SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 18, 2017

Revision Date: Aug 18, 2017

1.Identification

1.1 GHS Product identifier

Product name N-benzyl-1-(4-bromophenyl)methanimine

1.2 Other means of identification

Product number -
Other names benzyl-(4-bromo-benzyliden)-amine

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:27046-29-3 SDS

27046-29-3Relevant articles and documents

A saccharinate-bridged palladacyclic dimer with a Pd-Pd bond: Experimental and molecular docking studies of the interaction with DNA and BSA and in vitro cytotoxicity against human cancer cell lines

Karami, Kazem,Alinaghi, Moloud,Amirghofran, Zahra,Lipkowski, Janusz,Momtazi-Borojeni, Amir Abbas

, p. 574 - 586 (2018)

A new palladacyclic dimer [Pd2((C,N)L)2(μ-Sac)2] (1), in which L: C14H11NBr and sac: the saccharinate ligand, has been synthesized and completely characterized. X-ray crystallography has been used to determine the single crystal structure of this Pd(ii) complex. In this dimer, two palladium(ii) centers are bridged by a saccharinate anion, which is coordinated to the cyclopalladated units as a bidentate (N- and carbonyl O-atoms) ligand. According to DNA binding studies (UV-Vis spectroscopy, emission titration and viscosity measurements), the Pd(ii) complex interacts with calf-thymus DNA (CT-DNA) through a groove binding mode with a binding affinity on the order of 105. Furthermore, UV-Vis and fluorescence emission spectroscopy have been used to monitor the binding of the complex to bovine serum albumin (BSA). The complex is mainly located in site I of the protein, based on the competitive experiments using Warfarin, Ibuprofen and Digoxin as site markers. The results of molecular docking confirmed the experimental data. Finally, the in vitro cytotoxicity of sodium saccharin, ligand LH (C14H12NBr), complex 1 and cisplatin against cervical cancer (HeLa), lung cancer (A549) and breast cancer (MCF-7) cell lines has been studied. The complexation process has significantly improved the anticancer activity, as the IC50 values show. Furthermore, complex 1 has been tested against NIH normal fibroblast cells. Therefore, based on the SI definition, 1 can be assigned as a selective compound against cancer cells.

Enantioselective Reductive Cyanation and Phosphonylation of Secondary Amides by Iridium and Chiral Thiourea Sequential Catalysis

Chen, Dong-Huang,Sun, Wei-Ting,Zhu, Cheng-Jie,Lu, Guang-Sheng,Wu, Dong-Ping,Wang, Ai-E,Huang, Pei-Qiang

supporting information, p. 8827 - 8831 (2021/03/16)

The combination of transition-metal catalysis and organocatalysis increasingly offers chemists opportunities to realize diverse unprecedented chemical transformations. By combining iridium with chiral thiourea catalysis, direct enantioselective reductive cyanation and phosphonylation of secondary amides have been accomplished for the first time for the synthesis of enantioenriched chiral α-aminonitriles and α-aminophosphonates. The protocol is highly efficient and enantioselective, providing a novel route to the synthesis of optically active α-functionalized amines from the simple, readily available feedstocks. In addition, the reactions are scalable and the thiourea catalyst can be recycled and reused.

Efficient Co-Catalyzed Double Hydroboration of Nitriles: Application to One-Pot Conversion of Nitriles to Aldimines

Gudun, Kristina A.,Slamova, Ainur,Hayrapetyan, Davit,Khalimon, Andrey Y.

supporting information, p. 4963 - 4968 (2020/04/17)

The commercially available and bench-stable Co(acac)2/dpephos system is employed as a precatalyst for selective and efficient room temperature hydroboration of organic nitriles with HBPin to produce a series of N,N-diborylamines [RN(BPin)2], which react in situ with aldehydes to give aldimines. Formation of aldimines from N,N-diborylamines does not require a dehydrating agent, is applicable to a wide range of N,N-diborylamine and aldehyde substrates and is highly chemoselective, being unaffected by various common functional groups, such as alkenes, alkynes, secondary amines, ketones, esters, amides, carboxylic acids, pyridines, nitriles, and nitro compounds. The overall transformation represents a synthetically valuable approach to aldimines from nitriles and can be performed in a sequential one-pot manner, tolerating ester, lactone, carboxamide and unactivated alkene functionalities.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 27046-29-3