Welcome to LookChem.com Sign In|Join Free

CAS

  • or

3277-78-9

Post Buying Request

3277-78-9 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

3277-78-9 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 3277-78-9 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 3,2,7 and 7 respectively; the second part has 2 digits, 7 and 8 respectively.
Calculate Digit Verification of CAS Registry Number 3277-78:
(6*3)+(5*2)+(4*7)+(3*7)+(2*7)+(1*8)=99
99 % 10 = 9
So 3277-78-9 is a valid CAS Registry Number.
InChI:InChI=1/C14H18O/c1-11-6-5-9-13(10-11)14(15)12-7-3-2-4-8-12/h5-6,9-10,12H,2-4,7-8H2,1H3

3277-78-9SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 18, 2017

Revision Date: Aug 18, 2017

1.Identification

1.1 GHS Product identifier

Product name cyclohexyl-(3-methylphenyl)methanone

1.2 Other means of identification

Product number -
Other names cyclohexyl(3-methylphenyl)methanone

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:3277-78-9 SDS

3277-78-9Relevant articles and documents

Direct C-H Arylation of Aldehydes by Merging Photocatalyzed Hydrogen Atom Transfer with Palladium Catalysis

Chen, Guangying,Cheng, Gui-Juan,Guo, Bin,Li, Xiaobao,Ran, Chongzhao,Wang, Lu,Wang, Ting,Wei, Jun-Jie,Zheng, Caijuan,Zheng, Chao

, p. 7543 - 7551 (2020/08/21)

Herein, we report that merging palladium catalysis with hydrogen atom transfer (HAT) photocatalysis enabled direct arylations and alkenylations of aldehyde C-H bonds, facilitating visible light-catalyzed construction of a variety of ketones. Tetrabutylammonium decatungstate and anthraquinone were found to act as synergistic HAT photocatalysts. Density functional theory calculations suggested a Pd0-PdII-PdIII-PdI-Pd0 pathway and revealed that regeneration of the Pd0 catalyst and the photocatalyst occurs simultaneously in the presence of KHCO3. This regeneration features a low energy barrier, promoting efficient coupling of the palladium catalytic cycle with the photocatalytic cycle. The work reported herein suggests great promise for further applications of HAT photocatalysis in palladium-catalyzed cross-coupling and C-H functionalization reactions to be successful.

Redox-Neutral ortho Functionalization of Aryl Boroxines via Palladium/Norbornene Cooperative Catalysis

Li, Renhe,Liu, Feipeng,Dong, Guangbin

supporting information, p. 929 - 939 (2019/04/10)

Palladium/norbornene (Pd/NBE) cooperative catalysis, also known as the Catellani reaction, has become an increasingly useful method for site-selective arene functionalization; however, certain constraints still exist because of its intrinsic mechanistic pathway. Herein, we report a redox-neutral ortho functionalization of aryl boroxines via Pd/NBE catalysis. An electrophile, such as carboxylic acid anhydrides or O-benzoyl hydroxylamines, is coupled at the boroxine ortho position, and a proton as the second electrophile is introduced at the ipso position. This reaction does not require extra oxidants or reductants and avoids stoichiometric bases or acids, thereby tolerating a wide range of functional groups. In particular, orthogonal chemoselectivity between aryl iodide and boroxine moieties is demonstrated, which could be used to control reaction sequences. Finally, a deuterium-labeling study supports the ipso protonation pathway. This unique mechanistic feature could inspire the development of a new class of Pd/NBE-catalyzed transformations.Poly-substituted aromatics are ubiquitously found in drugs and agrochemicals. To realize streamlined synthesis, it is highly attractive if functional groups can be site-selectively introduced at unactivated positions with common arene starting materials. Here, a method is developed to directly introduce acyl and amino groups at unactivated ortho positions of readily available aryl boron compounds. Compared with the known ortho functionalization approaches, this method does not require stoichiometric bases, external oxidants, or reductants. Consequently, the reaction is chemoselective: a wide range of functional groups, including highly reactive aryl iodides, can be tolerated. The primary innovation lies in the use of a proton to terminate the ipso aryl intermediate and regenerate the active palladium catalyst. This unique mode of reactivity in the palladium/norbornene catalysis should open the door for developing new redox-neutral methods for site-selective arene functionalization.A redox-neutral ortho functionalization of aryl boroxines via palladium/norbornene cooperative catalysis is developed. The ortho amination and acylation are achieved with carboxylic acid anhydrides and O-benzoyl hydroxylamines as an electrophile, respectively, whereas protonation occurs at the ipso position. This transformation avoids using either extra oxidants and reductants or stoichiometric bases and acids. In addition, orthogonal chemoselectivity between aryl iodide and boroxine moieties is demonstrated for pathway divergence.

Palladium-Catalyzed Environmentally Benign Acylation

Suchand, Basuli,Satyanarayana, Gedu

, p. 6409 - 6423 (2016/08/16)

Recent trends in research have gained an orientation toward developing efficient strategies using innocuous reagents. The earlier reported transition-metal-catalyzed carbonylations involved either toxic carbon monoxide (CO) gas as carbonylating agent or functional-group-assisted ortho sp2 C-H activation (i.e., ortho acylation) or carbonylation by activation of the carbonyl group (i.e., via the formation of enamines). Contradicting these methods, here we describe an environmentally benign process, [Pd]-catalyzed direct carbonylation starting from simple and commercially available iodo arenes and aldehydes, for the synthesis of a wide variety of ketones. Moreover, this method comprises direct coupling of iodoarenes with aldehydes without activation of the carbonyl and also without directing group assistance. Significantly, the strategy was successfully applied to the synthesis n-butylphthalide and pitofenone.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 3277-78-9