Welcome to LookChem.com Sign In|Join Free

CAS

  • or

339-42-4

Post Buying Request

339-42-4 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

339-42-4 Usage

General Description

4-AMINO-N-[4-(TRIFLUOROMETHYL)PHENYL!BENZENESULFONAMIDE, TECH is a chemical compound used in various industrial applications. It is a sulfonamide derivative with a molecular formula of C13H11F3N2O2S and a molecular weight of 322.30 g/mol. 4-AMINO-N-[4-(TRIFLUOROMETHYL)PHENYL!BENZENESULFONAMIDE, TECH is commonly used as an intermediate in the synthesis of pharmaceuticals and agrochemicals. It is also used as a reagent in organic synthesis and as a raw material in the production of dyes and pigments. Additionally, it is used in the manufacturing of polymers, plastics, and rubber products. Overall, 4-AMINO-N-[4-(TRIFLUOROMETHYL)PHENYL!BENZENESULFONAMIDE, TECH is a versatile chemical with a wide range of industrial applications.

Check Digit Verification of cas no

The CAS Registry Mumber 339-42-4 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 3,3 and 9 respectively; the second part has 2 digits, 4 and 2 respectively.
Calculate Digit Verification of CAS Registry Number 339-42:
(5*3)+(4*3)+(3*9)+(2*4)+(1*2)=64
64 % 10 = 4
So 339-42-4 is a valid CAS Registry Number.

339-42-4SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name 4-amino-N-[4-(trifluoromethyl)phenyl]benzenesulfonamide

1.2 Other means of identification

Product number -
Other names 4-amino-N-(4-(trifluoromethyl)phenyl)benzenesulfonamide

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:339-42-4 SDS

339-42-4Relevant articles and documents

Comparative study between the anti-P. falciparum activity of triazolopyrimidine, pyrazolopyrimidine and quinoline derivatives and the identification of new PfDHODH inhibitors

Silveira, Flávia F.,de Souza, Juliana O.,Hoelz, Lucas V.B.,Campos, Vinícius R.,Jabor, Valquíria A.P.,Aguiar, Anna C.C.,Nonato, M. Cristina,Albuquerque, Magaly G.,Guido, Rafael V.C.,Boechat, Nubia,Pinheiro, Luiz C.S.

, (2020/11/10)

In this work, we designed and synthesized 35 new triazolopyrimidine, pyrazolopyrimidine and quinoline derivatives as P. falciparum inhibitors (3D7 strain). Thirty compounds exhibited anti-P. falciparum activity, with IC50 values ranging from 0.030 to 9.1 μM. The [1,2,4]triazolo[1,5-a]pyrimidine derivatives were more potent than the pyrazolo[1,5-a]pyrimidine and quinoline analogues. Compounds 20, 21, 23 and 24 were the most potent inhibitors, with IC50 values in the range of 0.030–0.086 μM and were equipotent to chloroquine. In addition, the compounds were selective, showing no cytotoxic activity against the human hepatoma cell line HepG2. All [1,2,4]triazolo[1,5-a]pyrimidine derivatives inhibited PfDHODH activity in the low micromolar to low nanomolar range (IC50 values of 0.08–1.3 μM) and did not show significant inhibition against the HsDHODH homologue (0–30% at 50 μM). Molecular docking studies indicated the binding mode of [1,2,4]triazolo[1,5-a]pyrimidine derivatives to PfDHODH, and the highest interaction affinities for the PfDHODH enzyme were in agreement with the in vitro experimental evaluation. Thus, the most active compounds against P. falciparum parasites 20 (R = CF3, R1 = F; IC50 = 0.086 μM), 21 (R = CF3; R1 = CH3; IC50 = 0.032 μM), 23, (R = CF3, R1 = CF3; IC50 = 0.030 μM) and 24 (R = CF3, 2-naphthyl; IC50 = 0.050 μM) and the most active inhibitor against PfDHODH 19 (R = CF3, R1 = Cl; IC50 = 0.08 μM - PfDHODH) stood out as new lead compounds for antimalarial drug discovery. Their potent in vitro activity against P. falciparum and the selective inhibition of the PfDHODH enzyme strongly suggest that this is the mechanism of action underlying this series of new [1,2,4]triazolo[1,5-a]pyrimidine derivatives.

Structure-guided design of potent diazobenzene inhibitors for the BET bromodomains

Zhang, Guangtao,Plotnikov, Alexander N.,Rusinova, Elena,Shen, Tong,Morohashi, Keita,Joshua, Jennifer,Zeng, Lei,Mujtaba, Shiraz,Ohlmeyer, Michael,Zhou, Ming-Ming

, p. 9251 - 9264 (2014/01/06)

BRD4, characterized by two acetyl-lysine binding bromodomains and an extra-terminal (ET) domain, is a key chromatin organizer that directs gene activation in chromatin through transcription factor recruitment, enhancer assembly, and pause release of the RNA polymerase II complex for transcription elongation. BRD4 has been recently validated as a new epigenetic drug target for cancer and inflammation. Our current knowledge of the functional differences of the two bromodomains of BRD4, however, is limited and is hindered by the lack of selective inhibitors. Here, we report our structure-guided development of diazobenzene-based small-molecule inhibitors for the BRD4 bromodomains that have over 90% sequence identity at the acetyl-lysine binding site. Our lead compound, MS436, through a set of water-mediated interactions, exhibits low nanomolar affinity (estimated Ki of 30-50 nM), with preference for the first bromodomain over the second. We demonstrated that MS436 effectively inhibits BRD4 activity in NF-κB-directed production of nitric oxide and proinflammatory cytokine interleukin-6 in murine macrophages. MS436 represents a new class of bromodomain inhibitors and will facilitate further investigation of the biological functions of the two bromodomains of BRD4 in gene expression.

Analgesic agents without gastric damage: Design and synthesis of structurally simple benzenesulfonanilide-type cyclooxygenase-1-selective inhibitors

Zheng, Xiaoxia,Oda, Hiroyuki,Takamatsu, Kayo,Sugimoto, Yukio,Tai, Akihiro,Akaho, Eiichi,Ali, Hamed Ismail,Oshiki, Toshiyuki,Kakuta, Hiroki,Sasaki, Kenji

, p. 1014 - 1021 (2007/10/03)

In order to create novel analgesic agents without gastric disturbance, structurally simple cyclooxygenase-1 (COX-1) inhibitors with a benzenesulfonanilide skeleton were designed and synthesized. As a result, compounds 11f and 15a, which possess a p-amino group on the benzenesulfonyl moiety and p-chloro group on the anilino moiety, showed COX-1-selective inhibition. Moreover compound 11f, which is the most potent compound in this study showed more potent analgesic activity than that of aspirin at 30 mg/kg by po. The anti-inflammatory activity and gastric damage, however, were very weak or not detectably different from aspirin. Since the structure of our COX-1 inhibitors are very simple, they may be useful as lead compounds for superior COX-1 inhibitors as analgesic agents without gastric disturbance.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 339-42-4