Welcome to LookChem.com Sign In|Join Free

CAS

  • or

41387-29-5

Post Buying Request

41387-29-5 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

41387-29-5 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 41387-29-5 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 4,1,3,8 and 7 respectively; the second part has 2 digits, 2 and 9 respectively.
Calculate Digit Verification of CAS Registry Number 41387-29:
(7*4)+(6*1)+(5*3)+(4*8)+(3*7)+(2*2)+(1*9)=115
115 % 10 = 5
So 41387-29-5 is a valid CAS Registry Number.

41387-29-5SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 13, 2017

Revision Date: Aug 13, 2017

1.Identification

1.1 GHS Product identifier

Product name 2-(4-acetylphenyl)propanoic acid

1.2 Other means of identification

Product number -
Other names 2-(4-Acetyl-phenyl)-propionsaeure

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:41387-29-5 SDS

41387-29-5Relevant articles and documents

Site-Selective, Remote sp3 C?H Carboxylation Enabled by the Merger of Photoredox and Nickel Catalysis

Sahoo, Basudev,Bellotti, Peter,Juliá-Hernández, Francisco,Meng, Qing-Yuan,Crespi, Stefano,K?nig, Burkhard,Martin, Ruben

supporting information, p. 9001 - 9005 (2019/06/24)

A photoinduced carboxylation of alkyl halides with CO2 at remote sp3 C?H sites enabled by the merger of photoredox and Ni catalysis is described. This protocol features a predictable reactivity and site selectivity that can be modulated by the ligand backbone. Preliminary studies reinforce a rationale based on a dynamic displacement of the catalyst throughout the alkyl side chain.

Rhodium-Catalyzed Hydrocarboxylation: Mechanistic Analysis Reveals Unusual Transition State for Carbon-Carbon Bond Formation

Pavlovic, Ljiljana,Vaitla, Janakiram,Bayer, Annette,Hopmann, Kathrin H.

supporting information, p. 941 - 948 (2018/03/30)

The mechanism of rhodium-COD-catalyzed hydrocarboxylation of styrene derivatives and α,β-unsaturated carbonyl compounds with CO2 has been investigated using density functional theory (PBE-D2/IEFPCM). The calculations support a catalytic cycle as originally proposed by Mikami and co-workers including β-hydride elimination, insertion of the unsaturated substrate into a rhodium-hydride bond, and subsequent carboxylation with CO2. The CO2 insertion step is found to be rate limiting. The calculations reveal two interesting aspects. First, during C-CO2 bond formation, the CO2 molecule interacts with neither the rhodium complex nor the organozinc additive. This appears to be in contrast to other CO2 insertion reactions, where CO2-metal interactions have been predicted. Second, the substrates show an unusual coordination mode during CO2 insertion, with the nucleophilic carbon positioned up to 3.6 ? away from rhodium. In order to understand the experimentally observed substrate preferences, we have analyzed a set of five alkenes: an α,β-unsaturated ester, an α,β-unsaturated amide, styrene, and two styrene derivatives. The computational results and additional experiments reported here indicate that the lack of activity with amides is caused by an overly high barrier for CO2 insertion and is not due to catalyst inactivation. Our experimental studies also reveal two putative side reactions, involving oxidative cleavage or dimerization of the alkene substrate. In the presence of CO2, these alternative reaction pathways are suppressed. The overall insights may be relevant for the design of future hydrocarboxylation catalysts.

Anchored Pd-complexes in mesoporous supports: Synthesis, characterization and catalysis studies for carbonylation reactions

Sarkar, Bibhas R.,Chaudhari, Raghunath V.

, p. 154 - 173 (2013/01/15)

Pd(pyca)(PPh3)(OTs) [pyca = 2-picolinate] complex is efficiently anchored inside different mesoporous matrices, such as MCM-41, MCM-48, SBA-15 using a molecular aminopropyl tether moiety employing different synthesis strategies. Thorough characterization of the materials using powder XRD, multinuclear (13C, 29Si, 31P) CP-MAS NMR, XPS, SEM, N2-sorption studies etc. confirmed the successful anchoring of the palladium complex to the walls of the support matrices thus establishing the synthesis protocols unambiguously. The catalysts were found to be highly active and selective for the carbonylation of different aryl olefins and alcohols. Consecutive recycling and successful reuse proved the stability and true heterogeneous nature of all the anchored catalysts, which is a substantial advancement over the existing heterogeneous catalysts for carbonylation.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 41387-29-5