Welcome to LookChem.com Sign In|Join Free

CAS

  • or

444643-09-8

Post Buying Request

444643-09-8 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

444643-09-8 Usage

General Description

(S)-1-(3-Fluorophenyl)ethanamine, also known as fluorenol, is a chemical compound that contains a fluorine-substituted phenyl ring attached to an ethylamine group. It is a chiral compound with a stereocenter at the carbon atom of the ethylamine group, resulting in two enantiomers, (S)- and (R)-fluorenol. (S)-1-(3-Fluorophenyl)ethanamine has been studied for its potential pharmaceutical properties, including as a potential treatment for attention-deficit/hyperactivity disorder (ADHD) and as a precursor in the synthesis of various pharmaceuticals. Additionally, fluorenol has been investigated for its potential use in the synthesis of other organic compounds and as a reagent in chemical reactions. Due to its chiral nature and potential pharmaceutical applications, fluorenol is a subject of interest in the fields of medicinal chemistry, organic synthesis, and chemical research.

Check Digit Verification of cas no

The CAS Registry Mumber 444643-09-8 includes 9 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 6 digits, 4,4,4,6,4 and 3 respectively; the second part has 2 digits, 0 and 9 respectively.
Calculate Digit Verification of CAS Registry Number 444643-09:
(8*4)+(7*4)+(6*4)+(5*6)+(4*4)+(3*3)+(2*0)+(1*9)=148
148 % 10 = 8
So 444643-09-8 is a valid CAS Registry Number.
InChI:InChI=1/C8H10FN/c1-6(10)7-3-2-4-8(9)5-7/h2-6H,10H2,1H3/t6-/m0/s1

444643-09-8SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name (S)-1-(3-Fluorophenyl)ethanamine

1.2 Other means of identification

Product number -
Other names (1S)-1-(3-fluorophenyl)ethanamine

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:444643-09-8 SDS

444643-09-8Relevant articles and documents

Pharmacological characterization of a new series of carbamoylguanidines reveals potent agonism at the H2R and D3R

Biselli, Sabrina,Bresinsky, Merlin,Buschauer, Armin,Forster, Lisa,Honisch, Claudia,Pockes, Steffen,Tropmann, Katharina,Bernhardt, Günther

supporting information, (2021/02/12)

Even today, the role of the histamine H2 receptor (H2R) in the central nervous system (CNS) is widely unknown. In previous research, many dimeric, high-affinity and subtype-selective carbamoylguanidine-type ligands such as UR-NK22 (5, pKi = 8.07) were reported as H2R agonists. However, their applicability to the study of the H2R in the CNS is compromised by their molecular and pharmacokinetic properties, such as high molecular weight and, consequently, a limited bioavailability. To address the need for more drug-like H2R agonists with high affinity, we synthesized a series of monomeric (thio)carbamoylguanidine-type ligands containing various spacers and side-chain moieties. This structural simplification resulted in potent (partial) agonists (guinea pig right atrium, [35S]GTPγS and β-arrestin2 recruitment assays) with human (h) H2R affinities in the one-digit nanomolar range (pKi (139, UR-KAT523): 8.35; pKi (157, UR-MB-69): 8.69). Most of the compounds presented here exhibited an excellent selectivity profile towards the hH2R, e.g. 157 being at least 3800-fold selective within the histamine receptor family. The structural similarities of our monomeric ligands to pramipexole (6), a dopamine receptor agonist, suggested an investigation of the binding behavior at those receptors. The target compounds were (partial) agonists with moderate affinity at the hD2longR and agonists with high affinity at the hD3R (e.g. pKi (139, UR-KAT523): 7.80; pKi (157, UR-MB-69): 8.06). In summary, we developed a series of novel, more drug-like H2R and D3R agonists for the application in recombinant systems in which either the H2R or the D3R is solely expressed. Furthermore, our ligands are promising lead compounds in the development of selective H2R agonists for future in vivo studies or experiments utilizing primary tissue to unravel the role and function of the H2R in the CNS.

Design, synthesis and biological activity of bicyclic carboxamide derivatives as TRK inhibitors

Cai, Shi,Li, Pei,Sun, Minghao,Zhang, Fangqing,Zhang, Huibin,Zhou, Jinpei

, (2020/10/18)

‘precision medicine’ is characterized by the selection of targeted drugs based on genetic characteristics of tumor from patients, and no longer selected basis on the type of cancer tissue. Among them, clinical trials on neurotrophin receptor tyrosine kinase genes (NTRK) have proven that great anti-cancer effects can be achieved in different cancer patients. In this paper, a novel total of twenty compounds in two categories have been designed and synthesized. Results of Kinase activity tests showed that I-9 (TRKA IC50 = 1.3 nM, TRKAG595R IC50 = 6.1 nM), and I-10 (TRKA IC50 = 1.1 nM, TRKAG595R IC50 = 5.3 nM) have significant inhibitory activity, and results of cell viability tests showed that I-9 and I-10 can maintain a great inhibitory effect in the Ba/F3-LMNA-NTRK1 cell line(IC50 = 81.1 nM and 41.7 nM, respectively), and in Ba/F3-LMNA-NTRK1-G595R cell line, I-9 and I-10 have better cell activity (IC50 was 495.3 nM, 336.6 nM, respectively) compared with the positive control drug LOXO-101. These results indicate that I-9 and I-10 are potential TRK inhibitors that can overcome drug resistance for further investigation.

Design, synthesis and antifungal activity of threoninamide carbamate derivatives via pharmacophore model

Dong, Wei-Li,Du, Xiu-Jiang,Liu, Xing-Hai,Peng, Xing-Jie,Zhao, Rui-Qi,Zhao, Wei-Guang

, p. 682 - 691 (2020/03/19)

Thirty-six novel threoninamide carbamate derivatives were designed and synthesised using active fragment-based pharmacophore model. Antifungal activities of these compounds were tested against Oomycete fungi Phytophthora capsici in vitro and in vivo. Interestingly, compound I-1, I-2, I-3, I-6 and I-7 exhibited moderate control effect (>50%) against Pseudoperonospora cubensis in greenhouse at 6.25 μg/mL, which is better than that of control. Meanwhile most of these compounds exhibited significant inhibitory against P. capsici. The other nine fungi were also tested. More importantly, some compounds exhibited remarkably high activities against Sclerotinia sclerotiorum, P. piricola and R. solan in vitro with EC50 values of 3.74–9.76 μg/mL. It is possible that the model is reliabile and this method can be used to discover lead compounds for the development of fungicides.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 444643-09-8