Welcome to LookChem.com Sign In|Join Free

CAS

  • or

446-51-5

Post Buying Request

446-51-5 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

446-51-5 Usage

Chemical Properties

clear colorless to slightly yellow liquid

Uses

2-Fluorobenzyl alcohol was used in Nafion-H catalyzed preparation of diphenylmethyl ethers of alcohols.

General Description

2-Fluorobenzyl alcohol undergoes oxidation using graphite oxide under ultrasonic irradiation to yield 2-fluorobenzaldehyde.

Check Digit Verification of cas no

The CAS Registry Mumber 446-51-5 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 4,4 and 6 respectively; the second part has 2 digits, 5 and 1 respectively.
Calculate Digit Verification of CAS Registry Number 446-51:
(5*4)+(4*4)+(3*6)+(2*5)+(1*1)=65
65 % 10 = 5
So 446-51-5 is a valid CAS Registry Number.
InChI:InChI=1/C7H5FO/c8-7-4-2-1-3-6(7)5-9/h1-5H

446-51-5 Well-known Company Product Price

  • Brand
  • (Code)Product description
  • CAS number
  • Packaging
  • Price
  • Detail
  • Alfa Aesar

  • (A14791)  2-Fluorobenzyl alcohol, 98%   

  • 446-51-5

  • 10g

  • 441.0CNY

  • Detail
  • Alfa Aesar

  • (A14791)  2-Fluorobenzyl alcohol, 98%   

  • 446-51-5

  • 50g

  • 1020.0CNY

  • Detail
  • Alfa Aesar

  • (A14791)  2-Fluorobenzyl alcohol, 98%   

  • 446-51-5

  • 100g

  • 1823.0CNY

  • Detail

446-51-5Relevant articles and documents

Pt nanoparticles entrapped in mesoporous metal-organic frameworks MIL-101 as an efficient catalyst for liquid-phase hydrogenation of benzaldehydes and nitrobenzenes

Pan, Huiyan,Li, Xiaohong,Yu, Yin,Li, Junrui,Hu, Jun,Guan, Yejun,Wu, Peng

, p. 1 - 9 (2015)

Metal organic-framework MIL-101 and inorganic mesoporous composites Al2O3@SBA-15 supported Pt catalysts, Pt/MIL-101 and Pt/Al2O3@SBA-15 catalysts, were prepared and characterized by means of X-ray diffraction (XRD), N2 adsorption-desorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM), CO chemisorption and thermo-gravimetric (TG) analysis. Pt nanoparticles were highly dispersed on both supports. In liquid-phase hydrogenation of nitrobenzene, benzaldehyde and their derivatives, the Pt/MIL-101 catalyst was superior to the Pt/Al2O3@SBA-15 catalyst in water. For liquid-phase hydrogenation of nitrobenzene with the Pt/MIL-101 catalyst, owing to high solubility of nitrobenzene in ethanol, the reaction in ethanol went much faster than that in water, furnishing a turnover frequency (TOF) in ethanol up to 18,053 h-1, almost triple of that obtained in water under similar conditions. The highest TOF of 25,438 h-1 was obtained in ethanol for hydrogenation of 3-chloro-nitrobenzene with the Pt/MIL-101 catalyst. As for hydrogenation of benzaldehyde series, 2-fluoro-benzaldehyde and 3-fluoro-benzaldehyde gave the highest TOFs of 5146 h-1 and 3165 h-1 in water with the Pt/MIL-101 and Pt/Al2O3@SBA-15 catalysts, respectively. We deduce that surface property of MIL-101 with high hydrophobicity is helpful to enrich reactants around the Pt/MIL-101 catalyst in water, where nitrobenzene or benzaldehyde and its derivatives have a limited solubility, so that high catalytic performance was achieved with the Pt/MIL-101 catalyst in water. Of particular note is that the Pt/MIL-101 catalyst can be reused at least four times without loss in activity or selectivity.

Application of bis(phosphinite) pincer nickel complexes to the catalytic hydrosilylation of aldehydes

Chang, Jiarui,Fang, Fei,Tu, Chenhao,Zhang, Jie,Ma, Nana,Chen, Xuenian

, (2020/10/27)

A series of bis(phosphinite) (POCOP) pincer ligated nickel complexes, [2,6-(tBu2PO)2C6H3]NiX (X = SH, 1; SCH2Ph, 2; SPh, 3; NCS, 4; N3, 5), were used to catalyse the hydrosilylation of aldehydes. It was found that both complexes 1 and 2 are active in catalysing the hydrosilylation of aldehydes with phenylsilane and complex 1 is comparatively more active. The expected alcohols were isolated in good to excellent yields after basic hydrolysis of the resultant hydrosilylation products. However, no reaction was observed when complex 3 or 4 or 5 was used as the catalyst. The results are consistent with complexes 1 and 2 serving as catalyst precursors, which generate the corresponding nickel hydride complex [2,6-(tBu2PO)2C6H3]NiH in situ, and the nickel hydride complex is the active species that catalyses this hydrosilylation process. The in situ generation of the nickel hydride species was supported by both experimental results and DFT calculation.

Generation of Oxidoreductases with Dual Alcohol Dehydrogenase and Amine Dehydrogenase Activity

Tseliou, Vasilis,Schilder, Don,Masman, Marcelo F.,Knaus, Tanja,Mutti, Francesco G.

supporting information, p. 3315 - 3325 (2020/12/11)

The l-lysine-?-dehydrogenase (LysEDH) from Geobacillus stearothermophilus naturally catalyzes the oxidative deamination of the ?-amino group of l-lysine. We previously engineered this enzyme to create amine dehydrogenase (AmDH) variants that possess a new hydrophobic cavity in their active site such that aromatic ketones can bind and be converted into α-chiral amines with excellent enantioselectivity. We also recently observed that LysEDH was capable of reducing aromatic aldehydes into primary alcohols. Herein, we harnessed the promiscuous alcohol dehydrogenase (ADH) activity of LysEDH to create new variants that exhibited enhanced catalytic activity for the reduction of substituted benzaldehydes and arylaliphatic aldehydes to primary alcohols. Notably, these novel engineered dehydrogenases also catalyzed the reductive amination of a variety of aldehydes and ketones with excellent enantioselectivity, thus exhibiting a dual AmDH/ADH activity. We envisioned that the catalytic bi-functionality of these enzymes could be applied for the direct conversion of alcohols into amines. As a proof-of-principle, we performed an unprecedented one-pot “hydrogen-borrowing” cascade to convert benzyl alcohol to benzylamine using a single enzyme. Conducting the same biocatalytic cascade in the presence of cofactor recycling enzymes (i.e., NADH-oxidase and formate dehydrogenase) increased the reaction yields. In summary, this work provides the first examples of enzymes showing “alcohol aminase” activity.

Chemoselective transfer hydrogenation of aromatic and heterocyclic aldehydes by green chemically prepared cobalt oxide nanoparticles

Krishnaveni,Lakshmi,Kaveri,Kadirvelu

, (2020/09/16)

A new surfactant (quercetin) assisted hydrothermal method is used for the preparation of phase pure cobalt oxide (Co3O4) nanoparticles (Nps). The quercetin acted well as surfactant in producing size controlled Nps. The produced Nps were extensively characterized by various techniques to reveal its chemical composition, structure, morphology, size and thermal behavior. The main objective of the study is to employ the prepared material as heterogeneous catalyst for hydrogenation of therapeutically important aldehydes. The capability of the catalyst is appear to be good, since the yield of alcohols from structurally different aldehydes is adequate with short period of time. Also the catalyst is recyclable, stable, no need of addition of ligands for activation and environmentally benign.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 446-51-5