Welcome to LookChem.com Sign In|Join Free

CAS

  • or

52707-54-7

Post Buying Request

52707-54-7 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

52707-54-7 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 52707-54-7 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 5,2,7,0 and 7 respectively; the second part has 2 digits, 5 and 4 respectively.
Calculate Digit Verification of CAS Registry Number 52707-54:
(7*5)+(6*2)+(5*7)+(4*0)+(3*7)+(2*5)+(1*4)=117
117 % 10 = 7
So 52707-54-7 is a valid CAS Registry Number.

52707-54-7SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 18, 2017

Revision Date: Aug 18, 2017

1.Identification

1.1 GHS Product identifier

Product name 4-((hydroxyimino)methyl)benzonitrile

1.2 Other means of identification

Product number -
Other names -

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:52707-54-7 SDS

52707-54-7Relevant articles and documents

Visible-Light-Promoted Metal-Free Synthesis of (Hetero)Aromatic Nitriles from C(sp3)?H Bonds**

Murugesan, Kathiravan,Donabauer, Karsten,K?nig, Burkhard

supporting information, p. 2439 - 2445 (2020/12/07)

The metal-free activation of C(sp3)?H bonds to value-added products is of paramount importance in organic synthesis. We report the use of the commercially available organic dye 2,4,6-triphenylpyrylium tetrafluoroborate (TPP) for the conversion of methylarenes to the corresponding aryl nitriles via a photocatalytic process. Applying this methodology, a variety of cyanobenzenes have been synthesized in good to excellent yield under metal- and cyanide-free conditions. We demonstrate the scope of the method with over 50 examples including late-stage functionalization of drug molecules (celecoxib) and complex structures such as l-menthol, amino acids, and cholesterol derivatives. Furthermore, the presented synthetic protocol is applicable for gram-scale reactions. In addition to methylarenes, selected examples for the cyanation of aldehydes, alcohols and oximes are demonstrated as well. Detailed mechanistic investigations have been carried out using time-resolved luminescence quenching studies, control experiments, and NMR spectroscopy as well as kinetic studies, all supporting the proposed catalytic cycle.

Reaction of Nitroxyl (HNO) with Hydrogen Sulfide and Hydropersulfides

Zarenkiewicz, Jessica,Khodade, Vinayak S.,Toscano, John P.

, p. 868 - 877 (2021/01/14)

Nitroxyl (HNO) has gained a considerable amount of attention because of its promising pharmacological effects. The biochemical mechanisms of HNO activity are associated with the modification of regulatory thiol proteins. Recently, several studies have suggested that hydropersulfides (RSSH), presumed signaling products of hydrogen sulfide (H2S)-mediated thiol (RSH) modification, are additional potential targets of HNO. However, the interaction of HNO with reactive sulfur species beyond thiols remains relatively unexplored. Herein, we present characterization of HNO reactivity with H2S and RSSH. The reaction of H2S with HNO leads to the formation of hydrogen polysulfides and sulfur (S8), suggesting a potential role in sulfane sulfur homeostasis. Furthermore, we show that hydropersulfides are more efficient traps for HNO than their thiol counterparts. The reaction of HNO with RSSH at varied stoichiometries has been examined with the observed production of various dialkylpolysulfides (RSSnSR) and other nitrogen-containing dialkylpolysulfide species (RSS-NH-SnR). We do not observe evidence of sulfenylsulfinamide (RS-S(O)-NH2) formation, a pathway expected by analogy with the known reactivity of HNO with thiol.

Dibenzazepine-linked isoxazoles: New and potent class of α-glucosidase inhibitors

Umm-E-Farwa,Ullah, Saeed,Khan, Maria Aqeel,Zafar, Humaira,Atia-tul-Wahab,Younus, Munisaa,Choudhary, M. Iqbal,Basha, Fatima Z.

supporting information, (2021/05/10)

α-Glucosidase inhibition is a valid approach for controlling hyperglycemia in diabetes. In the current study, new molecules as a hybrid of isoxazole and dibenzazepine scaffolds were designed, based on their literature as antidiabetic agents. For this, a series of dibenzazepine-linked isoxazoles (33–54) was prepared using Nitrile oxide-Alkyne cycloaddition (NOAC) reaction, and evaluated for their α-glucosidase inhibitory activities to explore new hits for treatment of diabetes. Most of the compounds showed potent inhibitory potency against α-glucosidase (EC 3.2.1.20) enzyme (IC50 = 35.62 ± 1.48 to 333.30 ± 1.67 μM) using acarbose as a reference drug (IC50 = 875.75 ± 2.08 μM). Structure-activity relationship, kinetics and molecular docking studies of active isoxazoles were also determined to study enzyme-inhibitor interactions. Compounds 33, 40, 41, 46, 48–50, and 54 showed binding interactions with critical amino acid residues of α-glucosidase enzyme, such as Lys156, Ser157, Asp242, and Gln353.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 52707-54-7