Welcome to LookChem.com Sign In|Join Free

CAS

  • or

55659-61-5

Post Buying Request

55659-61-5 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

55659-61-5 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 55659-61-5 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 5,5,6,5 and 9 respectively; the second part has 2 digits, 6 and 1 respectively.
Calculate Digit Verification of CAS Registry Number 55659-61:
(7*5)+(6*5)+(5*6)+(4*5)+(3*9)+(2*6)+(1*1)=155
155 % 10 = 5
So 55659-61-5 is a valid CAS Registry Number.

55659-61-5Relevant articles and documents

Mononuclear nickel(II) dithiolate complexes with chelating diphosphines: Insight into protonation and electrochemical proton reduction

Gu, Xiao-Li,Li, Jian-Rong,Li, Qian-Li,Guo, Yang,Jing, Xing-Bin,Chen, Zi-Bing,Zhao, Pei-Hua

, (2021/04/06)

Inspired by the metal active sites of [FeFe]- and [NiFe]?hydrogenases, a series of mononuclear Ni(II) ethanedithiolate complexes [{(Ph2PCH2)2×}Ni(SCH2CH2S)] (X = NCH2C5H4N-p (2a), NCH2C6H5 (2b), NCH2CHMe2 (2c), and CH2 (2d)) with chelating diphosphines were readily synthesized through the room-temperature treatments of mononuclear Ni(II) dichlorides [{(Ph2PCH2)2×}NiCl2] (1a-1d) with ethanedithiol (HSCH2CH2SH) in the presence of triethylamine (Et3N) as acid-binding agent. All the as-prepared complexes 1a-1d and 2a-2d are fully characterized through elemental analysis, nuclear magnetic resonance (NMR) spectrum, and by X-ray crystallography for 1b, 2a-2d. To further explore proton-trapping behaviors of this type of mononuclear Ni(II) complexes for catalytic hydrogen (H2) evolution, the protonation and electrochemical proton reduction of 2a-2c with aminodiphosphines (labeled PCNCP = (Ph2PCH2)2NR) and reference analogue 2d with nitrogen-free diphosphine (dppp = (Ph2PCH2)2CH2) are studied and compared under trifluoroacetic acid (TFA) as a proton source. Interestingly, the treatments of 2a-2d with excess TFA resulted in the unexpected formation of dinuclear Ni(II)-Ni(II) dication complexes [{(Ph2PCH2)2×}2Ni2(μ-SCH2CH2S)](CF3CO2)2 (3a-3d) and mononuclear Ni(II) N-protonated complexes [{(Ph2PCH2)2N(H)R}Ni(SCH2CH2S)](CF3CO2) (4a-4c), which has been well supported by high-resolution electrospray ionization mass spectroscopy (HRESI-MS), NMR (31P, 1H) as well as fourier transform infrared spectroscopy (FT-IR) techniques, and especially by X-ray crystallography for 3d. Additionally, the electrochemical properties of 2a-2d are investigated in the absence and presence of strong acid (TFA) by using cyclic voltammetry (CV), showing that the complete protonation of 2a-2d gave rise to dinuclear Ni2S2 species 3a-3d for electrocatalytic proton reduction to H2.

Efficient catalytic transfer hydrogenation reactions of carbonyl compounds by Ni(II)-diphosphine complexes

Venkatesh, Sadhana,Panicker, Rakesh R.,Lenin Kumar, Verdhi,Pavankumar,Viswanath, Nukala,Singh, Shangrila,Desikan, Rajagopal,Sivaramakrishna, Akella

, p. 2963 - 2977 (2020/11/03)

The catalytic transfer hydrogenation reactions of a series of aromatic and aliphatic carbonyl compounds were investigated using divalent Ni(II)-diphosphine complexes, [L2NiCl2] (where L2 = 1,1-bis(diphenylphosphino)methane (dppm), 1,2-bis(diphenylphosphino)ethane (dppe), 1,3-bis(diphenylphosphino)propane (dppp), 1,1-bis(diphenylphosphino)ferrocene (dppf), and N-butyl-N-(diphenylphosphino)-1,1-diphenylphosphinamine (dppba)). This is a single-step reaction in the presence of potassium hydroxide and isopropyl alcohol to afford the corresponding alcohols. This protocol tolerates other sensitive functional groups like olefinic double bonds and also achieves high chemoselectivity. All the reactions were monitored by GC and GC–MS. The plausible mechanism is also discussed. The method reported in the present article is simple, cost-effective, and provides excellent conversions. Nickel-diphosphine complexes appear as a potential alternative to expensive transition metal complexes.

Process design and scale-up of the synthesis of 2,2′:5′,2′-terthienyl

Smeets,Meijer,Meuldijk,Vekemans,Hulshof

, p. 10 - 16 (2013/09/05)

The objective of this study was the design of a scaleable process for the synthesis of 3-4 mol of α-terthienyl from 2,5-dibromothiophene and thienylmagnesium bromide in a 10-L stirred tank reactor. In THF the Grignard reagent, thienylmagnesium bromide, was readily formed from 2-bromothiophene and magnesium. To avoid crystallization the maximal concentration was limited to 1.4 M. Furthermore, the novel combination of THF and NiCl2[bis(diphenylphosphino)benzene] allows for fast double coupling of the Grignard reagent with 2,5-dibromothiophene. The concentration of catalyst could be limited to 0.5 mol % based on the amount of 2,5-dibromothiophene. An adapted workup procedure was developed, in which n-octane was used to separate the magnesium salts from the desired product. The reaction was performed in a (semi)batch-wise operated reactor. A global model for the coupling step proved to predict the results at 0.1-, 1-, and 10-L scales very accurately. The heat of reaction evolved in the coupling step was valorized and could be handled easily. Mixing of the feed stream and the reactor content proved to be another important factor in the scaling-up of the α-terthienyl synthesis.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 55659-61-5