Welcome to LookChem.com Sign In|Join Free

CAS

  • or

598-04-9

Post Buying Request

598-04-9 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

598-04-9 Usage

Chemical Properties

LIGHT BEIGE ADHERING CRYSTALS

Synthesis Reference(s)

The Journal of Organic Chemistry, 47, p. 2790, 1982 DOI: 10.1021/jo00135a024Synthesis, p. 299, 1978 DOI: 10.1055/s-1978-24730Tetrahedron Letters, 22, p. 1655, 1981 DOI: 10.1016/S0040-4039(01)90402-2

Purification Methods

Purify it by zone melting. It crystallises from pet ether (m 44-44.5o), CHCl3 (m 44o), and EtOH (m 45o). [Beilstein 1 H 371, 1 II 400, 1 III 1524, 1 IV 1561.]

Check Digit Verification of cas no

The CAS Registry Mumber 598-04-9 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 5,9 and 8 respectively; the second part has 2 digits, 0 and 4 respectively.
Calculate Digit Verification of CAS Registry Number 598-04:
(5*5)+(4*9)+(3*8)+(2*0)+(1*4)=89
89 % 10 = 9
So 598-04-9 is a valid CAS Registry Number.
InChI:InChI=1/C8H18O2S/c1-3-5-7-11(9,10)8-6-4-2/h3-8H2,1-2H3

598-04-9 Well-known Company Product Price

  • Brand
  • (Code)Product description
  • CAS number
  • Packaging
  • Price
  • Detail
  • Aldrich

  • (B102202)  Butylsulfone  99%

  • 598-04-9

  • B102202-25G

  • 751.14CNY

  • Detail

598-04-9SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 12, 2017

Revision Date: Aug 12, 2017

1.Identification

1.1 GHS Product identifier

Product name DI-N-BUTYL SULFONE

1.2 Other means of identification

Product number -
Other names 1-butylsulfonylbutane

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:598-04-9 SDS

598-04-9Relevant articles and documents

Visible-light-promoted aerobic oxidation of sulfides and sulfoxides in ketone solvents

Li, Xiaotong,Wang, Yu,Xie, Xiaomin,Yang, Liqun,Zhang, Zhaoguo

, (2022/03/09)

Simple and readily available ketones have been identified to promote the visible-light-promoted aerobic oxidation of sulfides and sulfoxides to sulfones. We report a simple and environmental-friendly oxidation protocol of sulfides to sulfones. Various sulfides were efficiently oxidized into sulfones with O2 as sustainable terminate oxidant, readily available thioxanthone as the photocatalyst and 3-pentanone (DEK) as the solvent. The protocol tolerates diverse functional groups, including halogens, ketone, ester, cyano, heterocycle and even cyclopropyl groups. The detection of the aerobic oxidation reaction in DEK by GC and HRMS disclosed that the key active intermediates were generated.

Synthesis, spectral characterization, SC-XRD, HSA, DFT and catalytic activity of novel dioxovanadium(V) complex with aminobenzohydrazone Schiff base ligand: An experimental and theoretical approach

Ashfaq, Muhammad,Behjatmanesh-Ardakani, Reza,Fallah-Mehrjardi, Mehdi,Kargar, Hadi,Munawar, Khurram Shahzad,Tahir, Muhammad Nawaz

, (2021/07/28)

A new dioxovanadium(V) complex was prepared by the reaction of VO(acac)2 with a tridentate ONO donor Schiff base, derived by condensing 3-ethoxysalicylaldehyde and 4-aminobenzohydrazide. The structures of synthesized products were characterized spectroscopically through FT-IR, 1H & 13C NMR and by elemental composition through combustion analysis. The structure of the complex was determined with the help of single crystal X-ray crystallography. It was inferred from the diffraction data that the geometry around the central metal ion in the complex is distorted square pyramidal. The tridentate Schiff base ligand is bonded to the central metal through the oxygen of the carbonyl group, the deprotonated phenolic oxygen atom and the azomethine nitrogen. The pyramid base is completed by other oxo ligands that are in cis positions. The theoretical calculations, performed by DFT using B3LYP/Def2-TZVP level of theory, determined that the intended outcomes are in compliance with the actual consequences. Furthermore, the catalytic potential of the vanadium complex was explored for the selective oxidation of the aryl and alkyl sulfides to the corresponding sulfones in the presence of 30% aqueous H2O2 in ethanol. In this work, rPBE and B3LYP methods are used to locate transition structures and to compare free energies of reactants, transition structures and the products involved in the reaction. Analyzing nudge elastic band data shows that the barrier free energy for the oxidation of sulfide to sulfoxide and sulfone are 13 and 83 kcal.mol?1, respectively. The main advantages of the present catalytic study are high yields of the products, less time required for the completion of the reaction and simple work-out procedure.

Flow Electrosynthesis of Sulfoxides, Sulfones, and Sulfoximines without Supporting Electrolytes

Amri, Nasser,Wirth, Thomas

, p. 15961 - 15972 (2021/07/20)

An efficient electrochemical flow process for the selective oxidation of sulfides to sulfoxides and sulfones and of sulfoxides toN-cyanosulfoximines has been developed. In total, 69 examples of sulfoxides, sulfones, andN-cyanosulfoximines have been synthesized in good to excellent yields and with high current efficiencies. The synthesis was assisted and facilitated through a supporting electrolyte-free, fully automated electrochemical protocol that highlights the advantages of flow electrolysis.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 598-04-9