Welcome to LookChem.com Sign In|Join Free

CAS

  • or

6143-71-1

Post Buying Request

6143-71-1 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

6143-71-1 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 6143-71-1 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 6,1,4 and 3 respectively; the second part has 2 digits, 7 and 1 respectively.
Calculate Digit Verification of CAS Registry Number 6143-71:
(6*6)+(5*1)+(4*4)+(3*3)+(2*7)+(1*1)=81
81 % 10 = 1
So 6143-71-1 is a valid CAS Registry Number.

6143-71-1SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name N-[dimethylamino(phenyl)phosphanyl]-N-methylmethanamine

1.2 Other means of identification

Product number -
Other names bis-(dimethylamino)-phenylphosphane

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:6143-71-1 SDS

6143-71-1Relevant articles and documents

Iridium-Triggered Allylcarbamate Uncaging in Living Cells

Gupta, Ajay,Gupta, Shalini,Mahawar, Pritam,Prasad, Puja,Sasmal, Pijus K.,Singh, Neelu

supporting information, p. 12644 - 12650 (2021/09/06)

Designing a metal catalyst that addresses the major issues of solubility, stability, toxicity, cell uptake, and reactivity within complex biological milieu for bioorthogonal controlled transformation reactions is a highly formidable challenge. Herein, we report an organoiridium complex that is nontoxic and capable of the uncaging of allyloxycarbonyl-protected amines under biologically relevant conditions and within living cells. The potential applications of this uncaging chemistry have been demonstrated by the generation of diagnostic and therapeutic agents upon the activation of profluorophore and prodrug in a controlled fashion within HeLa cells, providing a valuable tool for numerous potential biological and therapeutic applications.

Highly efficient phosphapalladacyclic catalysts for the hydroarylation of norbornene

Brunel, Jean Michel,Heumann, Andreas,Buono, Gerard

, p. 1946 - 1949 (2007/10/03)

Exceptionally high turnover numbers of up to 196 x 106 moles of product per mole of catalyst, turnover frequencies of up to 12 x 106 moles of product per mole of catalyst per hour, and yields of 98% were achieved in the hydroarylatio

The Mechanism of Double Olefination Using Titanium-Substituted Ylides

Reynolds, Kelly A.,Finn

, p. 2574 - 2593 (2007/10/03)

The adduct 3, derived from TiCl3(OiPr) and (Me2N)3P=CH2, engages in a complicated set of interactions with NaN(SiMe3)2 and aldehydes, resulting in the requirement to use excess amounts of both reagents for the one-pot synthesis of allenes. When TiCl2(OiPr)2 is used instead, ligand substitution reactions with NaN(SiMe3)2 are diminished and so stepwise transformations can be accomplished without excess amounts of each reagent. The selective production of vinylphosphonium salts and byproduct titanium oxides from Ti-substituted ylides and aldehydes is proposed to arise from the presence of a chloride leaving group on the metal. Isolated vinylphosphonium compounds may be deprotonated with phenyllithium to give thermally sensitive allenic phosphoranes, which have been characterized by low temperature multinuclear NMR. The reaction of allenic phosphoranes with aldehydes affords oxaphosphetane and betaine intermediates which appear to interconvert upon warming to produce allene and phosphine oxide. Dimethylamino-substituted phosphorus components are required for high yields in both steps of the allene-forming process, presumably to boost the reactivity of the hindered Ti-substituted ylide reagents and to stabilize the allenic phosphorane unit so that it may be trapped by aldehyde. The placement of chiral groups on the phosphorus methylide or aldehyde components results in low levels of enantiomeric and diastereomeric induction, respectively, during allene formation. In two cases, the diastereomeric ratios of initially-formed oxaphosphetanes have been found to differ from the diastereomeric composition of their product allenes, offering examples of the phenomenon known as "stereochemical drift". However, oxaphosphetane/betaine formation from allenic phosphorane and aldehyde has been found to be irreversible, suggesting that an intramolecular betaine olefin isomerization is responsible for the loss of stereochemical integrity during the Wittig step.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 6143-71-1