Welcome to LookChem.com Sign In|Join Free

CAS

  • or

64-11-9

Post Buying Request

64-11-9 Suppliers

Recommended suppliersmore

This product is a nationally controlled contraband, and the Lookchem platform doesn't provide relevant sales information.

64-11-9 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 64-11-9 includes 5 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 2 digits, 6 and 4 respectively; the second part has 2 digits, 1 and 1 respectively.
Calculate Digit Verification of CAS Registry Number 64-11:
(4*6)+(3*4)+(2*1)+(1*1)=39
39 % 10 = 9
So 64-11-9 is a valid CAS Registry Number.
InChI:InChI=1/C10H15N/c1-8-3-5-10(6-4-8)7-9(2)11/h3-6,9H,7,11H2,1-2H3

64-11-9SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 18, 2017

Revision Date: Aug 18, 2017

1.Identification

1.1 GHS Product identifier

Product name P-METHYLAMPHETAMINE

1.2 Other means of identification

Product number -
Other names 4-Methylamphetamine

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:64-11-9 SDS

64-11-9Relevant articles and documents

Direct Access to Primary Amines from Alkenes by Selective Metal-Free Hydroamination

Du, Yi-Dan,Chen, Bi-Hong,Shu, Wei

supporting information, p. 9875 - 9880 (2021/03/29)

Direct and selective synthesis of primary amines from easily available precursors is attractive yet challenging. Herein, we report the rapid synthesis of primary amines from alkenes via metal-free regioselective hydroamination at room temperature. Ammonium carbonate was used as ammonia surrogate for the first time, allowing for efficient conversion of terminal and internal alkenes into linear, α-branched, and α-tertiary primary amines under mild conditions. This method provides a straightforward and powerful approach to a wide spectrum of advanced, highly functionalized primary amines which are of particular interest in pharmaceutical chemistry and other areas.

Facile synthesis of controllable graphene-co-shelled reusable Ni/NiO nanoparticles and their application in the synthesis of amines under mild conditions

Cui, Zhibing,Liu, Jianguo,Liu, Qiying,Ma, Longlong,Singh, Thishana,Wang, Chenguang,Wang, Nan,Zhu, Yuting

supporting information, p. 7387 - 7397 (2020/11/19)

The primary objective of many researchers in chemical synthesis is the development of recyclable and easily accessible catalysts. These catalysts should preferably be made from Earth-abundant metals and have the ability to be utilised in the synthesis of pharmaceutically important compounds. Amines are classified as privileged compounds, and are used extensively in the fine and bulk chemical industries, as well as in pharmaceutical and materials research. In many laboratories and in industry, transition metal catalysed reductive amination of carbonyl compounds is performed using predominantly ammonia and H2. However, these reactions usually require precious metal-based catalysts or RANEY nickel, and require harsh reaction conditions and yield low selectivity for the desired products. Herein, we describe a simple and environmentally friendly method for the preparation of thin graphene spheres that encapsulate uniform Ni/NiO nanoalloy catalysts (Ni/NiO?C) using nickel citrate as the precursor. The resulting catalysts are stable and reusable and were successfully used for the synthesis of primary, secondary, tertiary, and N-methylamines (more than 62 examples). The reaction couples easily accessible carbonyl compounds (aldehydes and ketones) with ammonia, amines, and H2 under very mild industrially viable and scalable conditions (80 °C and 1 MPa H2 pressure, 4 h), offering cost-effective access to numerous functionalized, structurally diverse linear and branched benzylic, heterocyclic, and aliphatic amines including drugs and steroid derivatives. We have also demonstrated the scale-up of the heterogeneous amination protocol to gram-scale synthesis. Furthermore, the catalyst can be immobilized on a magnetic stirring bar and be conveniently recycled up to five times without any significant loss of catalytic activity and selectivity for the product.

Enzymatic enantiomeric resolution of phenylethylamines structurally related to amphetamine

Munoz, Lourdes,Rodriguez, Anna M.,Rosell, Gloria,Bosch, M. Pilar,Guerrero, Angel

experimental part, p. 8171 - 8177 (2012/01/04)

Both enantiomers of several phenylethylamines, structurally related to amphetamine, have been prepared in good yields and excellent enantiomeric purity by enzymatic kinetic resolution using CAL-B and ethyl methoxyacetate as the acyl donor. In the case of the 4-hydroxyderivative of amphetamine (compound 4i), the S enantiomer racemized possibly in a dynamic kinetic resolution (DKR) under the enzymatic conditions used. The Royal Society of Chemistry 2011.