Welcome to LookChem.com Sign In|Join Free

CAS

  • or

64784-13-0

Post Buying Request

64784-13-0 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

64784-13-0 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 64784-13-0 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 6,4,7,8 and 4 respectively; the second part has 2 digits, 1 and 3 respectively.
Calculate Digit Verification of CAS Registry Number 64784-13:
(7*6)+(6*4)+(5*7)+(4*8)+(3*4)+(2*1)+(1*3)=150
150 % 10 = 0
So 64784-13-0 is a valid CAS Registry Number.

64784-13-0SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name indigo dye

1.2 Other means of identification

Product number -
Other names indigo blue

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:64784-13-0 SDS

64784-13-0Relevant articles and documents

CROSS-LINKING COMPOUNDS AND METHODS OF USE THEREOF

-

Page/Page column 50-51, (2021/01/29)

Compounds comprising a cross-linking moiety and a protecting group are described herein along with their methods of use. The cross-linking moiety may comprise an indoxyl and the protecting group may comprise a sugar (e.g., a glucuronide or glucoside), phosphoester, or sulfoester group. The cross-linking moiety and protecting group may be attached to each other via an oxygen atom, sulfur atom, or linker. In some embodiments, the linker attaching the cross-linking moiety and protecting group is a self-immolative linker. A compound of the present invention may cross-link under physiological conditions and/or in vivo.

Structural and Biochemical Studies Enlighten the Unspecific Peroxygenase from Hypoxylon sp. EC38 as an Efficient Oxidative Biocatalyst

Ebner, Katharina,Glieder, Anton,Kroutil, Wolfgang,Mattevi, Andrea,Rinnofner, Claudia,Rotilio, Laura,Swoboda, Alexander

, p. 11511 - 11525 (2021/09/22)

Unspecific peroxygenases (UPOs) are glycosylated fungal enzymes that can selectively oxidize C-H bonds. UPOs employ hydrogen peroxide as the oxygen donor and reductant. With such an easy-to-handle cosubstrate and without the need for a reducing agent, UPOs are emerging as convenient oxidative biocatalysts. Here, an unspecific peroxygenase from Hypoxylon sp. EC38 (HspUPO) was identified in an activity-based screen of six putative peroxygenase enzymes that were heterologously expressed in Pichia pastoris. The enzyme was found to tolerate selected organic solvents such as acetonitrile and acetone. HspUPO is a versatile catalyst performing various reactions, such as the oxidation of prim- and sec-alcohols, epoxidations, and hydroxylations. Semipreparative biotransformations were demonstrated for the nonenantioselective oxidation of racemic 1-phenylethanol rac-1b (TON = 13 000), giving the product with 88% isolated yield, and the oxidation of indole 6a to give indigo 6b (TON = 2800) with 98% isolated yield. HspUPO features a compact and rigid three-dimensional conformation that wraps around the heme and defines a funnel-shaped tunnel that leads to the heme iron from the protein surface. The tunnel extends along a distance of about 12 ? with a fairly constant diameter in its innermost segment. Its surface comprises both hydrophobic and hydrophilic groups for dealing with substrates of variable polarities. The structural investigation of several protein-ligand complexes revealed that the active site of HspUPO is accessible to molecules of varying bulkiness with minimal or no conformational changes, explaining the relatively broad substrate scope of the enzyme. With its convenient expression system, robust operational properties, relatively small size, well-defined structural features, and diverse reaction scope, HspUPO is an exploitable candidate for peroxygenase-based biocatalysis.

Indigo Formation and Rapid NADPH Consumption Provide Robust Prediction of Raspberry Ketone Synthesis by Engineered Cytochrome P450 BM3

Rousseau, Olivier,Ebert, Maximilian C. C. J. C.,Quaglia, Daniela,Fendri, Ali,Parisien, Adem H.,Besna, Jonathan N.,Iyathurai, Saathanan,Pelletier, Joelle N.

, p. 837 - 845 (2019/12/15)

Natural raspberry ketone has a high value in the flavor, fragrance and pharmaceutical industries. Its extraction is costly, justifying the search for biosynthetic routes. We hypothesized that cytochrome P450 BM3 (P450 BM3) could be engineered to catalyze the hydroxylation of 4-phenyl-2-butanone, a naturally sourceable precursor, to raspberry ketone. The synthesis of indigo by variants of P450 BM3 has previously served as a predictor of promiscuous oxidation reactions. To this end, we screened 53 active-site variants of P450 BM3 using orthogonal high-throughput workflows to identify the most streamlined route to all indigo-forming variants. Among the three known and 13 new indigo-forming variants, eight hydroxylated 4-phenyl-2-butanone to raspberry ketone. Previously unreported variant A82Q displayed the highest initial rates and coupling efficiencies in synthesis of indigo and of raspberry ketone. It produced the highest total concentration of raspberry ketone despite producing less total indigo than previously reported variants. Its productivity, although modest, clearly demonstrates the potential for development of a biocatalytic route to raspberry ketone. In addition to validating indigo as a robust predictor of this promiscuous activity, we demonstrate that monitoring rapid NADPH consumption serves as an alternative predictor of a promiscuous reactivity in P450 BM3.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 64784-13-0