Welcome to LookChem.com Sign In|Join Free

CAS

  • or

67597-26-6

Post Buying Request

67597-26-6 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

67597-26-6 Usage

Description

13(S)-HYDROPEROXY-(9Z,11E,15Z)-OCTADECATRIENOIC ACID, also known as 13-HPOT, is a monohydroperoxy polyunsaturated fatty acid that is produced in soybeans through the action of soybean LO-2 on esterified α-linolenic acid. It plays a crucial role in a lipid-based signaling system in plants, which is initiated by insect and pathogen attack, helping the plant to respond and defend against these threats.

Uses

Used in Plant Defense Mechanisms:
13(S)-HYDROPEROXY-(9Z,11E,15Z)-OCTADECATRIENOIC ACID is used as a signaling molecule in the plant defense industry for its ability to participate in a lipid-based signaling system initiated by insect and pathogen attack. This helps plants to recognize and respond to threats, ultimately enhancing their defense mechanisms against harmful organisms.
Used in Agricultural Research:
In the agricultural research industry, 13(S)-HYDROPEROXY-(9Z,11E,15Z)-OCTADECATRIENOIC ACID is used as a subject of study to better understand the plant defense mechanisms and develop strategies to improve crop resistance against pests and diseases. This knowledge can be applied to create more resilient and sustainable agricultural practices.

Check Digit Verification of cas no

The CAS Registry Mumber 67597-26-6 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 6,7,5,9 and 7 respectively; the second part has 2 digits, 2 and 6 respectively.
Calculate Digit Verification of CAS Registry Number 67597-26:
(7*6)+(6*7)+(5*5)+(4*9)+(3*7)+(2*2)+(1*6)=176
176 % 10 = 6
So 67597-26-6 is a valid CAS Registry Number.
InChI:InChI=1/C18H30O4/c1-2-3-11-14-17(22-21)15-12-9-7-5-4-6-8-10-13-16-18(19)20/h3,7,9,11-12,15,17,21H,2,4-6,8,10,13-14,16H2,1H3,(H,19,20)/b9-7-,11-3-,15-12+/t17-/m0/s1

67597-26-6SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 18, 2017

Revision Date: Aug 18, 2017

1.Identification

1.1 GHS Product identifier

Product name 13(S)-HYDROPEROXY-(9Z,11E,15Z)-OCTADECATRIENOIC ACID

1.2 Other means of identification

Product number -
Other names (S)-13-hydroperoxy-9(Z),11(E),15(Z)-octadecatrienoic acid

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:67597-26-6 SDS

67597-26-6Relevant articles and documents

One-pot synthesis of bioactive cyclopentenones from α-linolenic acid and docosahexaenoic acid

Maynard, Daniel,Müller, Sara Mareike,Hahmeier, Monika,L?we, Jana,Feussner, Ivo,Gr?ger, Harald,Viehhauser, Andrea,Dietz, Karl-Josef

, p. 1356 - 1364 (2018)

Oxidation products of the poly-unsaturated fatty acids (PUFAs) arachidonic acid, α-linolenic acid and docosahexaenoic acid are bioactive in plants and animals as shown for the cyclopentenones prostaglandin 15d-PGJ2 and PGA2, cis-(+)-12-oxophytodienoic acid (12-OPDA), and 14-A-4 neuroprostane. In this study an inexpensive and simple enzymatic multi-step one-pot synthesis is presented for 12-OPDA, which is derived from α-linolenic acid, and the analogous docosahexaenoic acid (DHA)-derived cyclopentenone [(4Z,7Z,10Z)-12-[[-(1S,5S)-4-oxo-5-(2Z)-pent-2-en-1yl]-cyclopent-2-en-1yl] dodeca-4,7,10-trienoic acid, OCPD]. The three enzymes utilized in this multi-step cascade were crude soybean lipoxygenase or a recombinant lipoxygenase, allene oxide synthase and allene oxide cyclase from Arabidopsis thaliana. The DHA-derived 12-OPDA analog OCPD is predicted to have medicinal potential and signaling properties in planta. With OCPD in hand, it is shown that this compound interacts with chloroplast cyclophilin 20-3 and can be metabolized by 12-oxophytodienoic acid reductase (OPR3) which is an enzyme relevant for substrate bioactivity modulation in planta.

The CYP74B and CYP74D divinyl ether synthases possess a side hydroperoxide lyase and epoxyalcohol synthase activities that are enhanced by the site-directed mutagenesis

Gorina, Svetlana S.,Grechkin, Alexander N.,Iljina, Tatiana M.,Mukhtarova, Lucia S.,Smirnova, Elena O.,Toporkova, Yana Y.

, (2020/09/16)

The CYP74 family of cytochromes P450 includes four enzymes of fatty acid hydroperoxide metabolism: allene oxide synthase (AOS), hydroperoxide lyase (HPL), divinyl ether synthase (DES), and epoxyalcohol synthase (EAS). The present work is concerned with catalytic specificities of three recombinant DESs, namely, the 9-DES (LeDES, CYP74D1) of tomato (Solanum lycopersicum), 9-DES (NtDES, CYP74D3) of tobacco (Nicotiana tabacum), and 13-DES (LuDES, CYP74B16) of flax (Linum usitatissimum), as well as their alterations upon the site-directed mutagenesis. Both LeDES and NtDES converted 9-hydroperoxides of linoleic and α?linolenic acids to divinyl ethers colneleic and colnelenic acids (respectively) with only minorities of HPL and EAS products. In contrast, LeDES and NtDES showed low efficiency towards the linoleate 13-hydroperoxide, affording only the low yield of epoxyalcohols. LuDES exhibited mainly the DES activity towards α?linolenate 13-hydroperoxide (preferred substrate), and HPL activity towards linoleate 13-hydroperoxide, respectively. In contrast, LuDES converted 9-hydroperoxides primarily to the epoxyalcohols. The F291V and A287G mutations within the I-helix groove region (SRS-4) of LuDES resulted in the loss of DES activity and the acquirement of the epoxyalcohol synthase activity. Thus, the studied enzymes exhibited the versatility of catalysis and its qualitative alterations upon the site-directed mutagenesis.

Allene Oxide Synthase Pathway in Cereal Roots: Detection of Novel Oxylipin Graminoxins

Grechkin, Alexander N.,Ogorodnikova, Anna V.,Egorova, Alevtina M.,Mukhitova, Fakhima K.,Ilyina, Tatiana M.,Khairutdinov, Bulat I.

, p. 336 - 343 (2018/06/04)

Young roots of wheat, barley, and sorghum, as well as methyl jasmonate pretreated rice seedlings, undergo an unprecedented allene oxide synthase pathway targeted to previously unknown oxylipins 1–3. These Favorskii-type products, (4Z)-2-pentyl-4-tridecene-1,13-dioic acid (1), (2′Z)-2-(2′-octenyl)-decane-1,10-dioic acid (2), and (2′Z,5′Z)-2-(2′,5′-octadienyl)-decane-1,10-dioic acid (3), have a carboxy function at the side chain, as revealed by their MS and NMR spectral data. Compounds 1–3 were the major oxylipins detected, along with the related α-ketols. Products 1–3 were biosynthesized from (9Z,11E,13S)-13-hydroperoxy-9,11-octadecadienoic acid, (9S,10E,12Z)-9-hydroperoxy-10,12-octadecadienoic acid (9-HPOD), and (9S,10E,12Z,15Z)-9-hydroperoxy-10,12,15-octadecatrienoic acid, respectively, via the corresponding allene oxides and cyclopropanones. The data indicate that conversion of the allene oxide into the cyclopropanone is controlled by soluble cyclase. The short-lived cyclopropanones are hydrolyzed to products 1–3. The collective name “graminoxins” has been ascribed to oxylipins 1–3.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 67597-26-6