Welcome to LookChem.com Sign In|Join Free

CAS

  • or

6938-51-8

Post Buying Request

6938-51-8 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

6938-51-8 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 6938-51-8 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 6,9,3 and 8 respectively; the second part has 2 digits, 5 and 1 respectively.
Calculate Digit Verification of CAS Registry Number 6938-51:
(6*6)+(5*9)+(4*3)+(3*8)+(2*5)+(1*1)=128
128 % 10 = 8
So 6938-51-8 is a valid CAS Registry Number.

6938-51-8Downstream Products

6938-51-8Relevant articles and documents

Tropolonate salts as acyl-transfer catalysts under thermal and photochemical conditions: Reaction scope and mechanistic insights

Mai, Binh Khanh,Koenigs, Rene M.,Nguyen, Thanh Vinh,Lyons, Demelza J.M.,Empel, Claire,Pace, Domenic P.,Dinh, An H.

, p. 12596 - 12606 (2020/11/18)

Acyl-transfer catalysis is a frequently used tool to promote the formation of carboxylic acid derivatives, which are important synthetic precursors and target compounds in organic synthesis. However, there have been only a few structural motifs known to efficiently catalyze the acyl-transfer reaction. Herein, we introduce a different acyl-transfer catalytic paradigm based on the tropolone framework. We show that tropolonate salts, due to their strong nucleophilicity and photochemical activity, can promote the coupling reaction between alcohols and carboxylic acid anhydrides or chlorides to give products under thermal or blue light photochemical conditions. Kinetic studies and density functional theory calculations suggest interesting mechanistic insights for reactions promoted by this acyl-transfer catalytic system.

Asymmetric Magnesium-Catalyzed Hydroboration by Metal-Ligand Cooperative Catalysis

Falconnet, Alban,Magre, Marc,Maity, Bholanath,Cavallo, Luigi,Rueping, Magnus

supporting information, p. 17567 - 17571 (2019/11/13)

Asymmetric catalysis with readily available, cheap, and non-toxic alkaline earth metal catalysts represents a sustainable alternative to conventional synthesis methodologies. In this context, we describe the development of a first MgII-catalyzed enantioselective hydroboration providing the products with excellent yields and enantioselectivities. NMR spectroscopy studies and DFT calculations provide insights into the reaction mechanism and the origin of the enantioselectivity which can be explained by a metal-ligand cooperative catalysis pathway involving a non-innocent ligand.

Broad Scope Synthesis of Ester Precursors of Nonfunctionalized Chiral Alcohols Based on the Asymmetric Hydrogenation of α,β-Dialkyl-, α,β-Diaryl-, and α-Alkyl-β-aryl-vinyl Esters

León, Félix,González-Liste, Pedro J.,García-Garrido, Sergio E.,Arribas, Inmaculada,Rubio, Miguel,Cadierno, Victorio,Pizzano, Antonio

, p. 5852 - 5867 (2017/06/07)

The catalytic asymmetric hydrogenation of trisubstituted enol esters using Rh catalysts bearing chiral phosphine-phosphite ligands (P-OP) has been studied. Substrates covered comprise α,β-dialkyl, α-alkyl-β-aryl, and α,β-diarylvinyl esters, the corresponding hydrogenation products being suitable precursors to prepare synthetically relevant chiral nonfunctionalized alcohols. A comparison of reactivity indicates that it decreases in the order: α,β-dialkyl > α-alkyl-β-aryl > α,β-diaryl. Based on the highly modular structure of P-OP ligands employed, catalyst screening identified highly enantioselective catalysts for α,β-dialkyl (95-99% ee) and nearly all of α-alkyl-β-aryl substrates (92-98% ee), with the exception of α-cyclohexyl-β-phenylvinyl acetate which exhibited a low enantioselectivity (47% ee). Finally, α,β-diarylvinyl substrates showed somewhat lower enantioselectivities (79-92% ee). In addition, some of the catalysts provided a high enantioselectivity in the hydrogenation of E/Z mixtures (ca. Z/E = 75:25) of α,β-dialkylvinyl substrates, while a dramatic decrease on enantioselectivity was observed in the case of α-methyl-β-anisylvinyl acetate (Z/E = 58:42). Complementary deuteration reactions are in accord with a highly enantioselective hydrogenation for both olefin isomers in the case of α,β-dialkylvinyl esters. In contrast, deuteration shows a complex behavior for α-methyl-β-anisylvinyl acetate derived from the participation of the E isomer in the reaction.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 6938-51-8