Welcome to LookChem.com Sign In|Join Free

CAS

  • or

7440-71-3

Post Buying Request

7440-71-3 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

7440-71-3 Usage

Description

Californium is a synthetic radioactive transuranic element of the actinoid series of metals, not found naturally on Earth. It has 12 isotopes, with the most stable isotope being californium-252, which has a half-life of about 700 years. Californium was first synthesized in 1950 and is the fifth man-made transuranium element.

Uses

Used in Industrial Applications:
Californium is used as a neutron source for various industrial applications, such as measuring moisture in products, including the Earth's crust, to find water or supplies of underground oil.
Used in Medical Applications:
Californium is used as an intense neutron source in the treatment of cancer, particularly when combined with conventional chemotherapeutic drugs to enhance chemo-sensitivity and efficacy in resistant cases.
Used in Nuclear Reactors:
Californium-252 is used as a startup source for nuclear reactors, in nuclear reactor fuel rod scanners, and for neutron radiography of weapons components.
Used in Electronic Systems:
Californium-252's natural spontaneous fission makes it an ideal and accurate counter for electronic systems.
Physical Properties:
Californium's melting point is approximately 900°C, and its boiling point and density are unknown. The pure metal form is not found in nature and has not been artificially produced in particle accelerators. However, a few compounds consisting of californium and nonmetals have been formed by nuclear reactions.
Occurrence:
Neither californium nor its compounds are found in nature. All of its isotopes are produced artificially in extremely small amounts, and all of them are extremely radioactive. All of its isotopes are produced by the transmutation from other elements such as berkelium and americium.
Chemical Properties:
Californium has three known crystal structures: α-form (hexagonal), β-form (face-centered cubic), and γ-form (face-centered cubic). The ionic radius of Cf+++ is 0.0934 nm, and the ionic radius of Cf+++ is 0.0851 nm. Californium-252 is an intense neutron source, with 1 gram emitting 2.4×10^12 neutrons per second. It has applications in neutron activation analysis and field use in mineral prospecting and oil-well logging, with potential use in medical applications.

Isotopes

There are a total of 21 isotopes of californium. None are found in nature and allare artificially produced and radioactive. Their half-lives range from 45 nanoseconds forcalifornium-246 to 898 years for californium-251, which is its most stable isotope andwhich decays into curium-247 either though spontaneous fission or by alpha decay.

Origin of Name

Named for both the state of California and the University of California.

History

Californium, the sixth transuranium element to be discovered, was produced by Thompson, Street, Ghioirso, and Seaborg in 1950 by bombarding microgram quantities of 242Cm with 35 MeV helium ions in the Berkeley 60-inch cyclotron. Californium (III) is the only ion stable in aqueous solutions, all attempts to reduce or oxidize californium (III) having failed. The isotope 249Cf results from the beta decay of 249Bk while the heavier isotopes are produced by intense neutron irradiation by the reactions: 249 250 Bk(n,γ)→250 Bk?β?→ Cf and 249Cf(n,γ)→250 Cf followed by 250Cf(n,γ)→251 Cf(n,γ)→252 Cf The existence of the isotopes 249Cf, 250Cf, 251Cf, and 252Cf makes it feasible to isolate californium in weighable amounts so that its properties can be investigated with macroscopic quantities. Californium-252 is a very strong neutron emitter. One microgram releases 170 million neutrons per minute, which presents biological hazards. Proper safeguards should be used in handling californium. Twenty isotopes of californium are now recognized. 249Cf and 252Cf have half-lives of 351 years and 900 years, respectively. In 1960 a few tenths of a microgram of californium trichloride, CfCl3, californium oxychloride, CfOCl, and californium oxide, Cf2O3, were first prepared. Reduction of californium to its metallic state has not yet been accomplished. Because californium is a very efficient source of neutrons, many new uses are expected for it. It has already found use in neutron moisture gages and in well-logging (the determination of water and oil-bearing layers). It is also being used as a portable neutron source for discovery of metals such as gold or silver by on-the-spot activation analysis. 252Cf is now being offered for sale by the Oak Ridge National Laboratory (O.R.N.L.) at a cost of $60/μg and 249Cf at a cost of $185/μg plus packing charges. It has been suggested that californium may be produced in certain stellar explosions, called supernovae, for the radioactive decay of 254Cf (55-day half-life) agrees with the characteristics of the light curves of such explosions observed through telescopes. This suggestion, however, is questioned. Californium is expected to have chemical properties similar to dysprosium.

Characteristics

Californium is a transuranic element of the actinide series that is homologous with dysprosium(66Dy), just above it in the rare-earth lanthanide series. Cf-245 was the first isotopeof californium that was artificially produced. It has a half-life of just 44 minutes. Isotopes ofcalifornium are made by subjecting berkelium to high-energy neutrons within nuclear reactors,as follows: 249Bk + (neutrons and λ gamma rays) → 250Bk → 250Cf + β- (beta particleemission).

Preparation

All isotopes of the element are synthesized in the nuclear reactor. The first isotope synthesized had the mass 241, produced by irradiation of milligram quantities of americium-241 with alpha particles of 35 MeV in a cyclotron: The product was separated by ion exchange While the lighter isotopes are prepared by alpha particle bombardment, the heavier ones by neutron irradiation of large quantities of americium, curium or plutonium: Only a small fraction of Bk-249 is obtained by the above reaction because neutrons also induce fission. Alternatively, uranium-238 may be converted to Bk-249 by very short but intense neutron bombardment followed by five successive beta decays.

Production Methods

Isotopes of californium may be produced in a cyclotron by neutron irradia tion or charged particle bombardment. Lighter isotopes of californium may be produced by bombardment of curium-242 or curium-244 with alpha particles having 35.5 MeV energy: The above method was used for producing californium-245 during its first ever synthesis. Heavier isotopes of californium may be obtained by intense neutron irradiation: This, in turn is produced by successive slow neutron irradiation of curi um-244: Californium-254 may be produced by thermonuclear explosion resulting in the reaction of uranium-238 with intense neutron flux followed by a sequence of β- decays (Cunningham, B. B. 1968. In Encyclopedia of Chemical Elements, ed. Clifford A. Hampel, New York: Reinhold Book Co.) Californium is separated from other elements by fractionation and precipita tion, and further purified by solvent extraction or ion exchange.

Hazard

Californium’s greatest danger is as a biological bone-seeking radioactive element, whichcan be both a radiation hazard and a useful treatment for bone cancer. If mishandled, all ofcalifornium’s isotopes and compounds can be a potential radiation poison.

Check Digit Verification of cas no

The CAS Registry Mumber 7440-71-3 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 7,4,4 and 0 respectively; the second part has 2 digits, 7 and 1 respectively.
Calculate Digit Verification of CAS Registry Number 7440-71:
(6*7)+(5*4)+(4*4)+(3*0)+(2*7)+(1*1)=93
93 % 10 = 3
So 7440-71-3 is a valid CAS Registry Number.
InChI:InChI=1/Cf

7440-71-3SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 15, 2017

Revision Date: Aug 15, 2017

1.Identification

1.1 GHS Product identifier

Product name californium atom

1.2 Other means of identification

Product number -
Other names californium

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:7440-71-3 SDS

7440-71-3Upstream product

7440-71-3Downstream Products

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 7440-71-3