Welcome to LookChem.com Sign In|Join Free

CAS

  • or

79499-57-3

Post Buying Request

79499-57-3 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

79499-57-3 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 79499-57-3 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 7,9,4,9 and 9 respectively; the second part has 2 digits, 5 and 7 respectively.
Calculate Digit Verification of CAS Registry Number 79499-57:
(7*7)+(6*9)+(5*4)+(4*9)+(3*9)+(2*5)+(1*7)=203
203 % 10 = 3
So 79499-57-3 is a valid CAS Registry Number.

79499-57-3SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 17, 2017

Revision Date: Aug 17, 2017

1.Identification

1.1 GHS Product identifier

Product name 1-[(2-Chlorophenyl)iminomethyl]cyclopentanol

1.2 Other means of identification

Product number -
Other names 1-((2-chlorophenyl)(imino)methyl)cyclopentanol

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:79499-57-3 SDS

79499-57-3Relevant articles and documents

Family of Structurally Related Bioconjugates Yields Antibodies with Differential Selectivity against Ketamine and 6-Hydroxynorketamine

Zheng, Zhen,Kyzer, Jillian L.,Worob, Adam,Wenthur, Cody J.

, p. 4113 - 4122 (2021/11/01)

The dissociative-hypnotic compound ketamine is being used in an increasingly wide range of therapeutic contexts, including anesthesia, adjunctive analgesia, treatment-resistant depression, but it also continues to be a notable substance of abuse. No specific antidotes exist for ketamine intoxication or overdose. Immunopharmacotherapy has demonstrated the ability to offer overdose protection through production of highly specific antibodies that prevent psychoactive drug penetration across the blood-brain barrier, although antiketamine antibodies have not yet been assessed or optimized for use in this approach. Moreover, generation of specific antibodies also provides an opportunity to address the role of 6-hydroxynorketamine metabolites in ketamine's rapid-acting antidepressant effect through selective restriction of metabolite access to the central nervous system. Hapten design is a critical element for tuning immune recognition of small molecules, as it affects the presentation of the target antigen and thus the quality and selectivity of the response. Here, we report the synthesis and optimization of carrier protein and conjugation conditions for an initial hapten, norketamine-N-COOH (NK-N-COOH), to optimize vaccination conditions and assess the functional consequences of such vaccination on ketamine-induced behavioral alterations occurring at dissociative-like (50 mg/kg) doses. Iterating from this initial approach, two additional haptens, ketamine-N-COOH (KET-N-COOH) and 6-hydroxynorketamine-N-COOH (HNK-N-COOH), were synthesized to target either ketamine or 6-hydroxynorketamine with greater selectivity. The ability of these haptens to generate antiketamine, antinorketamine, and anti-6-hydroxynorketamine immune responses in mice was then assessed using enzyme-linked immunosorbent assay (ELISA) and competitive surface plasmon resonance (SPR) methods. All three haptens provoked immune responses in vivo, although the KET-N-COOH and 6-HNK-N-COOH haptens yielded antibodies with 5- to 10-fold improvements in affinity for ketamine and/or 6-hydroxynorketamine, as compared to NK-N-COOH. Regarding selectivity, vaccines bearing a KET-N-COOH hapten yielded an antibody response with approximately equivalent Kd values against ketamine (86.4 ± 3.2 nM) and 6-hydroxynorketamine (74.1 ± 7.8 nM) and a 90-fold weaker Kd against norketamine. Contrastingly, 6-HNK-N-COOH generated the highest affinity and most selective antibody profile, with a 38.3 ± 4.7 nM IC50 against 6-hydroxynorketamine; Kd values for ketamine and norketamine were 33- to 105-fold weaker, at 1290 ± 281.5 and 3971 ± 2175 nM, respectively. Overall, these findings support the use of rational hapten design to generate antibodies capable of distinguishing between structurally related, yet mechanistically distinct, compounds arising from the same precursor molecule. As applied to the production of the first-reported anti-6-hydroxynorketamine antibodies to date, this approach demonstrates a promising path forward for identifying the individual and combinatorial roles of ketamine and its metabolites in supporting rewarding effects and/or rapid-acting antidepressant activity.

PROCESS FOR SYNTHESIS AND PURIFICATION OF (2R,6R)-HYDROXYNORKETAMINE

-

, (2019/12/28)

A process for the preparation of (2R,6R)-hydroxynorketamine is provided. The process requires no chromatography purification and affords the (2R,6R)-hydroxynorketamine in eight steps with a 26% overall yield and greater than 97% purity.

The CYP2B6*6 allele significantly alters the N-demethylation of ketamine enantiomers in vitro

Li, Yibai,Coller, Janet K.,Hutchinson, Mark R.,Klein, Kathrin,Zanger, Ulrich M.,Stanley, Nathan J.,Abell, Andrew D.,Somogyi, Andrew A.

, p. 1264 - 1272 (2013/07/28)

Ketamine is primarily metabolized to norketamine by hepatic CYP2B6 and CYP3A4-mediated N-demethylation. However, the relative contribution from each enzyme remains controversial. The CYP2B6*6 allele is associated with reduced enzyme expression and activity that may lead to interindividual variability in ketamine metabolism. We examined the N-demethylation of individual ketamine enantiomers using human liver microsomes (HLMs) genotyped for the CYP2B6*6 allele, insect cell-expressed recombinant CYP2B6 and CYP3A4 enzymes, and COS-1 cell-expressed recombinant CYP2B6.1 and CYP2B6.6 protein variant. Effects of CYP-selective inhibitors on norketamine formation were also determined in HLMs. The two-enzyme Michaelis-Menten model best fitted the HLM kinetic data. The Michaelis-Menten constants (Km) for the highaffinity enzyme and the low-affinity enzyme were similar to those for the expressed CYP2B6 and CYP3A4, respectively. The intrinsic clearance for both ketamine enantiomers by the high-affinity enzyme in HLMs with CYP2B6 *1/*1 genotype were at least 2-fold and 6-fold higher, respectively, than those for CYP2B6*1/ *6 genotype and CYP2B6*6/*6 genotype. The Vmax and Km values for CYP2B6.1 were approximately 160 and 70% of those for CYP2B6.6, respectively. N,N9N9-triethylenethiophosphoramide (thioTEPA) (CYP2B6 inhibitor, 25 μM) and the monoclonal antibody against CYP2B6 but not troleandomycin (CYP3A4 inhibitor, 25 μM) or the monoclonal antibody against CYP3A4 inhibited ketamine N-demethylation at clinically relevant concentrations. The degree of inhibition was significantly reduced in HLMs with the CYP2B6*6 allele (genedose P *6 allele on enzyme-ketamine binding and catalytic activity. Copyright

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 79499-57-3