Welcome to LookChem.com Sign In|Join Free

CAS

  • or

88187-01-3

Post Buying Request

88187-01-3 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

88187-01-3 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 88187-01-3 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 8,8,1,8 and 7 respectively; the second part has 2 digits, 0 and 1 respectively.
Calculate Digit Verification of CAS Registry Number 88187-01:
(7*8)+(6*8)+(5*1)+(4*8)+(3*7)+(2*0)+(1*1)=163
163 % 10 = 3
So 88187-01-3 is a valid CAS Registry Number.

88187-01-3SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name 2-(4-methoxyphenyl)-3-phenylmethoxychromen-4-one

1.2 Other means of identification

Product number -
Other names 3-benzyloxy-4'-methoxyflavone

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:88187-01-3 SDS

88187-01-3Relevant articles and documents

Exploring 3-Benzyloxyflavones as new lead cholinesterase inhibitors: synthesis, structure–activity relationship and molecular modelling simulations

Mughal, Ehsan Ullah,Sadiq, Amina,Ayub, Momna,Naeem, Nafeesa,Javid, Asif,Sumrra, Sajjad Hussain,Zafar, Muhammad Naveed,Khan, Bilal Ahmad,Malik, Fouzia Perveen,Ahmed, Ishtiaq

, p. 6154 - 6167 (2020/08/10)

In this protocol, a series of 3-benzyloxyflavone derivatives have been designed, synthesized, characterized and investigated in?vitro as cholinesterase inhibitors. The findings showed that all the synthesized target compounds (1–10) are potent dual inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes with varying IC50 values. In comparison, they are more active against AChE than BChE. Remarkably, amongst the series, the compound 2 was identified as the most active inhibitor of both AChE (IC50 = 0.05 ± 0.01 μM) and BChE (IC50 = 0.09 ± 0.02 μM) relative to the standard Donepezil (IC50 = 0.09 ± 0.01 for AChE and 0.13 ± 0.04 μM for BChE). Moreover, the derivatives 5 (IC50 = 0.07 ± 0.02 μM) and 10 (0.08 ± 0.02 μM) exhibited the highest selective inhibition against AChE as compared to the standard. Preliminary structure-activity relationship was established and thus found that cholinesterase inhibitory activities of these compounds are highly dependent on the nature and position of various substituents on Ring-B of the 3-Benzyloxyflavone scaffolds. In order to find out the nature of binding interactions of the compounds and active sites of the enzymes, molecular docking studies were carried out. (Figure presented.) HIGHLIGHTS 3-benzyloxyflavone analogues were designed, synthesized and characterized. The target molecules (1–10) were evaluated for their inhibitory potential against AChE and BChE inhibitory activities. Limited structure-activity relationship was developed based on the different substituent patterns on aryl part. Molecular docking studies were conducted to correlate the in?vitro results and to identify possible mode of interactions at the active pocket site of the enzyme. Communicated by Ramaswamy H. Sarma.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 88187-01-3