Welcome to LookChem.com Sign In|Join Free

CAS

  • or

88609-06-7

Post Buying Request

88609-06-7 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

88609-06-7 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 88609-06-7 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 8,8,6,0 and 9 respectively; the second part has 2 digits, 0 and 6 respectively.
Calculate Digit Verification of CAS Registry Number 88609-06:
(7*8)+(6*8)+(5*6)+(4*0)+(3*9)+(2*0)+(1*6)=167
167 % 10 = 7
So 88609-06-7 is a valid CAS Registry Number.

88609-06-7SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 14, 2017

Revision Date: Aug 14, 2017

1.Identification

1.1 GHS Product identifier

Product name 4-azidobenzamide

1.2 Other means of identification

Product number -
Other names Benzamide,4-azido

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:88609-06-7 SDS

88609-06-7Relevant articles and documents

Nickel Boride Catalyzed Reductions of Nitro Compounds and Azides: Nanocellulose-Supported Catalysts in Tandem Reactions

Proietti, Giampiero,Prathap, Kaniraj Jeya,Ye, Xinchen,Olsson, Richard T.,Dinér, Peter

supporting information, p. 133 - 146 (2021/11/04)

Nickel boride catalyst prepared in situ from NiCl2 and sodium borohydride allowed, in the presence of an aqueous solution of TEMPO-oxidized nanocellulose (0.01 wt%), the reduction of a wide range of nitroarenes and aliphatic nitro compounds. Here we describe how the modified nanocellulose has a stabilizing effect on the catalyst that enables low loading of the nickel salt pre-catalyst. Ni-B prepared in situ from a methanolic solution was also used to develop a greener and facile reduction of organic azides, offering a substantially lowered catalyst loading with respect to reported methods in the literature. Both aromatic and aliphatic azides were reduced, and the protocol is compatible with a one-pot Boc-protection of the obtained amine yielding the corresponding carbamates. Finally, bacterial crystalline nanocellulose was chosen as a support for the Ni-B catalyst to allow an easy recovery step of the catalyst and its recyclability for new reduction cycles.

Identification of highly potent and selective Cdc25 protein phosphatases inhibitors from miniaturization click-chemistry-based combinatorial libraries

Jing, Lanlan,Wu, Gaochan,Hao, Xia,Olotu, Fisayo A.,Kang, Dongwei,Chen, Chin Ho,Lee, Kuo-Hsiung,Soliman, Mahmoud E.S.,Liu, Xinyong,Song, Yuning,Zhan, Peng

, (2019/09/19)

Cell division cycle 25 (Cdc25) protein phosphatases play key roles in the transition between the cell cycle phases and their association with various cancers has been widely proven, which makes them ideal targets for anti-cancer treatment. Though several Cdc25 inhibitors have been developed, most of them displayed low activity and poor subtype selectivity. Therefore, it is extremely important to discover novel small molecule inhibitors with potent activities and significant selectivity for Cdc25 subtypes, not only served as drugs to treat cancer but also to probe its mechanism in transitions. In this study, miniaturized parallel click chemistry synthesis via CuAAC reaction followed by in situ biological screening were used to discover selective Cdc25 inhibitors. The bioassay results showed that compound M2N12 proved to be the most potent Cdc25 inhibitor, which also act as a highly selective Cdc25C inhibitor and was about 9-fold potent than that of NSC 663284. Moreover, M2N12 showed remarkable anti-growth activity against the KB-VIN cell line, equivalent to that of PXL and NSC 663284. An all-atom molecular dynamics (MD) simulation approach was further employed to probe the significant selectivity of M2N12 for Cdc25C relative to its structural homologs Cdc25A and Cdc25B. Overall, above results make M2N12 a promising lead compound for further investigation and structural modification.

Design, Synthesis, and Evaluation of Triazole Derivatives That Induce Nrf2 Dependent Gene Products and Inhibit the Keap1-Nrf2 Protein-Protein Interaction

Bertrand, Hélène C.,Schaap, Marjolein,Baird, Liam,Georgakopoulos, Nikolaos D.,Fowkes, Adrian,Thiollier, Clarisse,Kachi, Hiroko,Dinkova-Kostova, Albena T.,Wells, Geoff

supporting information, p. 7186 - 7194 (2015/10/05)

The transcription factor Nrf2 regulates the expression of a large network of cytoprotective and metabolic enzymes and proteins. Compounds that directly and reversibly inhibit the interaction between Nrf2 and its main negative regulator Keap1 are potential pharmacological agents for a range of disease types including neurodegenerative conditions and cancer. We describe the development of a series of 1,4-diphenyl-1,2,3-triazole compounds that inhibit the Nrf2-Keap1 protein-protein interaction (PPI) in vitro and in live cells and up-regulate the expression of Nrf2-dependent gene products.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 88609-06-7