Welcome to LookChem.com Sign In|Join Free

CAS

  • or

93614-78-9

Post Buying Request

93614-78-9 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier
  • BEST PRICE/(2E)-3-(2-Methylphenyl)-2-propenal CAS NO.93614-78-9

    Cas No: 93614-78-9

  • USD $ 7.0-8.0 / Metric Ton

  • 1 Metric Ton

  • 1000 Metric Ton/Day

  • KAISA GROUP INC
  • Contact Supplier

93614-78-9 Usage

General Description

2-Methylcinnamaldehyde is an organic compound with a chemical structure consisting of a cinnamaldehyde group with an additional methyl group attached to the 2-position. It is commonly used as a flavoring and fragrance agent in the food and cosmetic industries due to its sweet, spicy, and floral aroma. 2-Methylcinnamaldehyde is also known to possess antimicrobial and antioxidant properties, making it a potential candidate for use in pharmaceutical and nutraceutical products. Additionally, it has been studied for its potential anti-inflammatory and anti-cancer properties, making it a subject of interest in the field of medicinal chemistry. However,

Check Digit Verification of cas no

The CAS Registry Mumber 93614-78-9 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 9,3,6,1 and 4 respectively; the second part has 2 digits, 7 and 8 respectively.
Calculate Digit Verification of CAS Registry Number 93614-78:
(7*9)+(6*3)+(5*6)+(4*1)+(3*4)+(2*7)+(1*8)=149
149 % 10 = 9
So 93614-78-9 is a valid CAS Registry Number.
InChI:InChI=1/C10H10O/c1-9-5-2-3-6-10(9)7-4-8-11/h2-8H,1H3/b7-4+

93614-78-9SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 15, 2017

Revision Date: Aug 15, 2017

1.Identification

1.1 GHS Product identifier

Product name 2-Methylcinnamaldehyde

1.2 Other means of identification

Product number -
Other names 2-METHYLCINNAMALDEHYDE

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:93614-78-9 SDS

93614-78-9Relevant articles and documents

An efficient Pd@Pro-GO heterogeneous catalyst for the α, β-dehydrogenation of saturated aldehyde and ketones

Pan, Gao-Fei,Wang, Zhe,Chang, Yi-Yuan,Hao, Yue,Wang, Yi-Chen,Xing, Rui-Guang

supporting information, (2021/12/30)

An Efficient Pd@Pro-GO heterogeneous catalyst was developed that can promote the α, β-dehydrogenation of saturated aldehyde and ketones in the yield of 73% ? 92% at mild conditions without extra oxidants and additives. Pd@Pro-GO heterogeneous catalyst was synthesized via two steps: firstly, the Pro-GO was obtained by the esterification reaction between graphene oxide (GO) and N-(tert-Butoxycarbonyl)-L-proline (Boc-Pro-OH), followed by removing the protection group tert-Butoxycarbonyl (Boc), which endowed the proline-functionalized GO with both the lewis acid site (COOH) and the bronsted base site (NH), besides, the pyrrolidine of proline also can form imine with aldehydes to activate these substrates; Second, palladium was dispersed on the proline-functionalized GO (Pro-GO) to obtained heterogeneous catalyst Pd@Pro-GO. Mechanistic studies have shown that the Pd@Pro-GO-catalyzed α,β-dehydrogenation of saturated aldehyde and ketones was realized by an improved heterogeneously catalyzed Saegusa oxidation reaction. Based on the obove characteristics, the Pd@Pro-GO will be widely used in the transition metal catalytic field.

Selective Rhodium-Catalyzed Hydroformylation of Terminal Arylalkynes and Conjugated Enynes to (Poly)enals Enabled by a π-Acceptor Biphosphoramidite Ligand

Zhao, Jiangui,Zheng, Xueli,Tao, Shaokun,Zhu, Yuxin,Yi, Jiwei,Tang, Songbai,Li, Ruixiang,Chen, Hua,Fu, Haiyan,Yuan, Maolin

supporting information, p. 6067 - 6072 (2021/08/16)

The hydroformylation of terminal arylalkynes and enynes offers a straightforward synthetic route to the valuable (poly)enals. However, the hydroformylation of terminal alkynes has remained a long-standing challenge. Herein, an efficient and selective Rh-catalyzed hydroformylation of terminal arylalkynes and conjugated enynes has been achieved by using a new stable biphosphoramidite ligand with strong π-acceptor capacity, which affords various important E-(poly)enals in good yields with excellent chemo- and regioselectivity at low temperatures and low syngas pressures.

Enantiodivergent One-Pot Synthesis of Axially Chiral Biaryls Using Organocatalyst-Mediated Enantioselective Domino Reaction and Central-to-Axial Chirality Conversion

Hayashi, Yujiro,Koshino, Seitaro,Kwon, Eunsang,Monde, Kenji,Taniguchi, Tohru

, p. 15786 - 15794 (2021/10/14)

Enantiodivergent one-pot synthesis of biaryls was developed using a catalytic amount of a single chiral source. A domino organocatalyst-mediated enantioselective Michael reaction and aldol condensation provided centrally chiral dihydronaphthalenes with excellent enantioselectivity, from which an enantiodivergent chirality conversion from central-to-axial chirality was achieved. Both enantiomers of biaryls were obtained with excellent enantioselectivity. All transformations can be conducted in a single reaction vessel. A plausible reaction mechanism for the enantiodivergence is proposed.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 93614-78-9