Welcome to LookChem.com Sign In|Join Free

CAS

  • or

94670-24-3

Post Buying Request

94670-24-3 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

94670-24-3 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 94670-24-3 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 9,4,6,7 and 0 respectively; the second part has 2 digits, 2 and 4 respectively.
Calculate Digit Verification of CAS Registry Number 94670-24:
(7*9)+(6*4)+(5*6)+(4*7)+(3*0)+(2*2)+(1*4)=153
153 % 10 = 3
So 94670-24-3 is a valid CAS Registry Number.

94670-24-3Relevant articles and documents

Site-Selective Alkoxylation of Benzylic C?H Bonds by Photoredox Catalysis

Lee, Byung Joo,DeGlopper, Kimberly S.,Yoon, Tehshik P.

supporting information, p. 197 - 202 (2019/11/26)

Methods that enable the direct C?H alkoxylation of complex organic molecules are significantly underdeveloped, particularly in comparison to analogous strategies for C?N and C?C bond formation. In particular, almost all methods for the incorporation of alcohols by C?H oxidation require the use of the alcohol component as a solvent or co-solvent. This condition limits the practical scope of these reactions to simple, inexpensive alcohols. Reported here is a photocatalytic protocol for the functionalization of benzylic C?H bonds with a wide range of oxygen nucleophiles. This strategy merges the photoredox activation of arenes with copper(II)-mediated oxidation of the resulting benzylic radicals, which enables the introduction of benzylic C?O bonds with high site selectivity, chemoselectivity, and functional-group tolerance using only two equivalents of the alcohol coupling partner. This method enables the late-stage introduction of complex alkoxy groups into bioactive molecules, providing a practical new tool with potential applications in synthesis and medicinal chemistry.

Reactions of Substituted 1-Phenylethyl Carbocations with Alcohols and Other Nucleophilic Reagents

Richard, John P.,Jencks, William P.

, p. 1373 - 1383 (2007/10/02)

Selectivities of a series of substituted 1-phenylethyl carbocations toward alcohols and other nucleophiles have been determined by product analysis.The 1-(4-dimethylamino)phenyl)ethyl carbocation exhibits a high selectivity in its reactions with alcohols , with KEtOH/KTFE = 140 and βnuc = 0.5.The selectivity for activation-limited reactions with alcohols decreases progressively with increasing reactivity of the carbocation, in contrast to the behavior expected from the N+ scale of reactivity.A sharper drop in selectivity for carbocations that react faster than ca. 109 S-1 is attributed to an approach to limiting rate constants for the more reactive alcohol.The limiting selectivity of kEtOH/kTFE = 2 for carbocations with ks ca. 1011 S-1 may represent reaction from a pool of solvent molecules in which there is a modest charge-dipole interaction between the alcohol and carbocation.The relatively low reactivity of water corresponds to that expected for an alcohol of pKa ca. 13.This is ascribed to an imbalance between charge development and solvation of the transition state compared with H3O+.Substituted acetate anions react with the 1-(4-methoxyphenyl)ethyl carbocation with βnuc = 0.13.The selectivity decreases with increasing cation reactivity as the carboxylate ions approach limiting rate constants of ca. 5 * 108 M-1 s-1.This relatively low limit is attributed to a requirement for desolvation of basic oxygen anions before reaction.A dependence of solvent selectivity on the leaving group shows that the 1-(4-methylphenyl)ethyl carbocation reacts with solvent, in part, through an ion pair.Azide ion reacts from a pool that can be described by an equilibrium constant of Kas = 0.3 M-1.Styrene formation from this carbocation is catalyzed by a leaving carboxylate ion and by added buffers, wih β = 0.14.The equilibrium constant for the formation of a reactive base-cation pair is ca. 0.04 M-1.Rate constants for collapse of the ion pair, to form ester, and for proton removal, to form 4-methylstyrene, were estimated to be approximately 1.6 * 1010 s-1 and 6 * 107 s-1, respectively.The rate constants for deprotonation and for hydration of the styrene give the acid dissociation constant of the carbocation to form 4-methylstyrene, pKA = -11.2.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 94670-24-3