Welcome to LookChem.com Sign In|Join Free

CAS

  • or

9012-54-8

Post Buying Request

9012-54-8 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier
  • 9012-54-8 Denim washing experts having products from the "concentrated" bio-enzyme to the "ready to use" complex enzyme

    Cas No: 9012-54-8

  • USD $ 2100.0-2100.0 / Metric Ton

  • 20 Metric Ton

  • 10 Metric Ton/Month

  • Hebei yanxi chemical co.,LTD.
  • Contact Supplier

9012-54-8 Usage

Description

Cellulase is a complex enzyme that catalyzes the hydrolysis of cellulose into glucose. It is produced by various microorganisms, including bacteria, fungi, and protozoa, and plays a crucial role in the breakdown of plant cell walls. Cellulase has a wide range of applications across different industries due to its ability to degrade cellulose, a major component of plant biomass.

Uses

Used in Pharmaceutical Industry:
Cellulase is used as a research tool for studying the development of occupational asthma in various industries, including the pharmaceutical industry. It helps in understanding the allergens and their effects on human health.
Used in Detergent Industry:
Cellulase is used as an additive in detergents to improve their cleansing properties. It helps in breaking down cellulose-based stains, such as those found on fabrics, making them easier to remove during the washing process.
Used in Baking Industry:
In the baking industry, cellulase is used as a dough conditioner and improver. It helps in breaking down cellulose present in flour, resulting in better dough texture and improved bread quality.
Used in Enzyme Production Industry:
Cellulase is used in the production of other enzymes, such as xylanase and pectinase, which are used in various industrial applications, including food processing and biofuel production.
Used in Animal Feed Industry:
Cellulase is used in the animal feed industry to improve the nutritive value of poultry feed. It helps in the in vitro hydrolysis of defatted rice bran, making it more digestible and nutritious for animals.
Used in Biodegradation of Paper Products:
Cellulase is applied in the biodegradation of various paper products, such as foolscap paper, filter paper, newspaper, and office paper, as well as microcrystalline cellulose. It helps in breaking down cellulose fibers, making the paper more susceptible to microbial degradation.
Used in Biodegradability Studies:
Cellulase is used to study the biodegradability of bioabsorbable bacterial cellulose (BBC) material. It helps in degrading cello-oligosaccharides into glucose, providing insights into the environmental impact and potential applications of BBC.
Used in Research on Cellulase Transcription Factors:
Cellulase is used in research to assess the differential regulation of cellulase transcription factors, such as XYR1, ACE2, and ACE. This helps in understanding the genetic control of cellulase production and its potential applications in various industries.

Brief Introduction

Cellulase naturally occurs in plant tissues; wherein it acts as a reinforcing material. It is thick and viscous in its physical arateristics, which makes it ideal for adding to foods and beverages to make ingredients combine and congealtogether. Cellulase is found in all plants and is quite abundant. Actually, it is the most widespread organic compound and is found in every habitat around the world. Its abundance and ease of acquisition make cellulase an ideal additive to foods and drinks, because it is cheap and easy to extract. Cellulase, as a nutrient, belongs to the category of roughage or fiber. Its binding properties make it popular among large-scale food and drink industries, who use it produce fruit juice, sparkling waters, spirits and other alcoholic beverages. When combined with other enzymes, cellulase is applied to produce wine; here its role is to extract foreign and unwanted substances from grape skins. In less quantities, cellulase is added as a congealant to washing and cleaning agents.

Biological enzymes

Cellulase is a group of enzymes that catalyze the hydrolysis of cellulose to produce glucose and low polymerizing fibers, including three major components of dextran endonuclease, dextran exonuclease and cellobietase. It is not a single enzyme, but a synergistic multi-component enzyme system. Cellulase is an off-white powder or liquid. In 1906, Seilliere found the cellulase in the digestive solution of the snail. The cellulase hydrolyzes the β-1, 4-glucosidic linkages in the fibers to produce soluble polymers and D-glucose. Endocellulase breaks down internal bonds that it interrupts the cellulose’s crystalline structure, causing the exposure of cellulose polysaccharide chains. Exocellulase continues the process of endocellulase by breaking down the ends of the particular chains into maximum 4 units. That’s how disaccharides or tetrasaccharides like the cellobiose appear. Exocellulases were found in 2 forms: CBHII acts at the non-reducing cellulose end while the CBHI acts at the reducing end. Beta-glucosidase or cellobiase usually hydrolyses the above mentioned exocellulase and produces monosaccharides. The oxidative cellulase uses radical reactions like dehydrogenase and cellobiose to depolymerize cellulose. The activity of cellulase is commonly to split cellulose and convert it into beta-glucose. The symbiotic bacteria of herbivores produce this form of cellulase. Humans and other animals, besides ruminants, cannot generate this form of cellulase. Thus, they can split it only partially by using fermentation and they are not able to utilize the energy from the fibrous plants. According to the source of the enzyme, the relative molecular mass of the lowest 5000, up to 400000. The optimum pH is 4.0 to 5.0. The optimum temperature is 40~60 ℃. Some of the metal ions Mg2 +, Cl2 + and neutral salts can activate the enzyme, and some other metal ions Ag2 +, Cu2 +, Mn2 +, Hg2 + and dyes can inactivate the enzyme. The addition of cellulase to the wine can improve the saccharification effect and the liquor yield, and reduce the viscosity of the mash. Cellulase mainly comes from Aspergillus Niger and Trichoderma. Figure 1 the molecular structural formula of the cellulase

Source

The source of cellulase is very broad. Insects, mollusks, protozoa, bacteria, actinomycetes, fungi and so can all produce cellulase. 1. Bacteria: Bacteria produce a lower amount of cellulase, mainly EG, most of which are not active against crystalline cellulose, and the resulting enzyme is an intracellular enzyme or adsorbed on the bacterial wall and rarely secreted into the extracellular which increases the difficulty of extraction and purification. Therefore, in practice, bacteria are rarely used in industry. At present, more research focuses on the cellulose slime, Anoeba limax Duzardin and fibrobacter. 2. Actinomyces: Very few studies focus on actinomycetes. Mycobacterium and the original actinomycete produce almost no cellulase or have low yield; species produce a relatively high amount include black and red spin actinomycetes, rose actinomycetes, actinomycetes cellulosae and white rose actinomycetes. 3. Fungi: Current microorganisms used in the production of cellulase mostly belong to fungi with more studies focusing on Trichoderma, Aspergillus, Rhizopus and Peculiar mold. They can produce a large number of cellulase, especially for Trichoderma. Trichoderma reesei and Trichoderma viride are fungi with high enzyme activity in Trichoderma. The fungi can produce three types of cellulase, being able to be secreted into the bacteria. They generally don’t gather to form a multi-enzyme complex, but having a strong synergistic effect with each other. At present, its preparations include cellulase from Trichoderma viride, Aspergillus Niger, Fusariumsis, Paecilomyces and Penicillium decumbens and other cellulase. Microorganisms of the genera Trichoderma and Aspergillus are regarded to be cellulase producers, and crude enzymes produced by these microorganisms are commercially available for use in agriculture. Microorganisms of the genus Trichoderma produce comparatively large quantities of endo-?-glucanase and exo-?-glucanase, but only low levels of ?-glucosidase, while those of the genus Aspergillus produce comparatively large quantities of endo-?-glucanase and ?-glucosidase with low levels of exo-?-glucanase production. 4. Yeast: Due to the demand for industrial production of cellulase, it is required to increase enzyme production, exocrine and heat resistance. Recently, more and more research has been done on cellulase gene cloning. Although almost all of the cloned genes can be expressed in E. coli, but due to extraction difficulties and low level of expression, the current gene expression research has been transferred to the eukaryotic expression system. Yeast expression systems are mostly applied currently. Yeast does not produce toxins. Apply it for the expression of cellulase gene, the product is highly glycosylated. After correct processing and modification, it can be directly secreted into the medium with the expression level being high. For example, the yield of the CHB Ⅱ, EG Ⅰ expressed in yeast is up to 100mg/L or more, and has a normal biological activity.

Application in Detergent Industry

Fibrous fabrics, especially cotton fiber fabrics, often generate many microfiber fluffs after wearing and multiple laundering. These fluffs are wrapped together with organic and inorganic stains to form a lot of balls, resulting in darker and hardened surfaces of the clothes. To solve this problem, as early as 1970, it had been put forward in foreign patents of the idea of using fiber enzymes to eliminate these microfibers, but the idea had failed to become the reality for a long time. It was until 1985, used of the method of fermentation of Rhizopus sp. to make the world's first detergent-purpose cellulase. The product was named Cellulase. In 1987, a bacterial cellulase was introduced and successfully used in Attack detergent. Since then, cellulase also officially joined the ranks of detergent enzymes. Now, the application of cellulase in detergent is not too popular, but the brand-name products of some large companies have already used it. For example, the United States P & G some of the detergent, it contains this cellulase. Cellulase has different mechanism of action with other detergent enzyme. Instead of catalyzing the decomposition of a substance in the stain to make it become substance which can be washed with water to achieve the purpose of cleaning, cellulase takes effect through its micro-fiber effect on the fabric, achieving the purpose of finishing and renovation of the fabric. Because natural fibers, especially cotton fibers are glucose-composing macromolecules. The sugar in the molecule is only bound by β-1, 4-glucose to form a linear macromolecule. This kind of molecule was assembled into a bundle, known as the fibril. The assembly of a lot of fibrils leads to microfiber. Under normal circumstances, the fiber is arranged in a crystal way, so its surface is smooth, soft with bright appearance. However, after wearing, rubbing and repeated washing, some microfibers will be out of its crystallization area, forming many microfibers on the fiber surface or between fibers. These microfibers are wrapped around each other into pompons. They can not only make the clothes be dirty due to incorporation of the dirt substances, but also make both the single-color or color clothes become darkened because of the light scattering on the ball. If you want to remove these puffs from the clothing, then you need to choose the appropriate cellulase in order to complete this task well. In other words, only enzymes that meet the following conditions can be used in detergents.

Cellulose and Cellulase

Cellulose is a kind of macromolecule compound which is composed of many glucose molecules connected with each other. It is the most abundant polysaccharide-class natural organic compound on the earth. Cotton is the natural product of the highest cellulose content. In addition, wood, crop straw are also rich in cellulose, and many of the commercial cellulose are made from natural cellulose. Cellulose is a straight-chain glucose polymer connected with beta-1, 4 chains. The cellulose bundles are typically linked by hydrogen bonds to form a larger monomer. There are many different views on the number of cellulose molecules in such monomers and how they are organized. There is a view that some areas of a cellulosic molecule are ordered, structurally solid and non-flexible (crystalline cellulose), while other regions are flexible, string-like "wound" structure (amorphous state cellulose). When the cellulose fibers inhale of water, they will swell with the swelling effect being limited to the amorphous regions of the fiber while the crystalline area of the solid hydrogen bonding grid make them be free from swelling. The amount of bonds that the enzyme can act depends on the degree of swelling of the cellulose. In order to let the cellulase to efficiently hydrolyze the cellulose, it is usually necessary to pretreat to improve the swelling of the fiber. Cellulase is a complex enzyme. It is generally believed that it consists of at least three components, namely, C1 enzyme, CX enzyme and glucosidase. The first two enzymes can decompose cellulose into cellobiose while the third enzyme will break down the cellobiose into glucose. It is exactly under the synergistic effect of these three enzymes, cellulose is finally hydrolyzed into glucose, providing nutrition for microbial growth but also for human use.

Expectation as renewable resource

Now cellulases account for a signifi cant share of the world ’ s industrial enzyme market. The growing concerns about depletion of crude oil and the emissions of greenhouse gases have motivated the production of bioethanol from lignocellulose, especially through enzymatic hydrolysis of lignocelluloses materials—sugar platform ( Bayer et al., 2007 ; Himmel et al., 1999 ; Zaldivar et al., 2001 ). However, costs of cellulase for hydrolysis of pretreated lignocellulosic materials need to be reduced, and their catalytic effi ciency should be further increased in order to make the process economically feasible ( Sheehan and Himmel, 1999 ). Cellulase: Application and Synthesis method

Preparation

Use Trichoderma viride as raw material for fermentation, followed by fractional precipitation of ammonium sulfate with refinement to get the products. It is generally applied (Aspergillus Niger) or Trichoderma reesei for culturing, followed by salting out the fermentation broth for precipitation and refinement to obtain it. The resulting product contains not only cellulase, but also hemicellulase, pectinase, protease, lipase, xylanase, cellobiosease and amyloglucosidase.

References

https://www.reference.com/science/functions-enzyme-cellulase-5120d31a24f1eac8 http://www.fao.org/docrep/w7241e/w7241e08.htm http://bioenergycenter.org/besc/publications/Zhang_cellulases_yr7.pdf http://worldofenzymes.info/enzymes-introduction/cellulase/

Flammability and Explosibility

Notclassified

Biochem/physiol Actions

Cellulases are enzymes that hydrolyze cellulose to glucose. Cellulase is used to study the development of occupational asthma in the detergent, pharmaceutical, baking, and enzyme production industries. Cellulase is added to detergents to improve cleansing properties. It is also applied in the biodegradation of paper products such as foolscap paper, filter paper, newspaper and office paper as well as microcrystalline cellulose.

Check Digit Verification of cas no

The CAS Registry Mumber 9012-54-8 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 9,0,1 and 2 respectively; the second part has 2 digits, 5 and 4 respectively.
Calculate Digit Verification of CAS Registry Number 9012-54:
(6*9)+(5*0)+(4*1)+(3*2)+(2*5)+(1*4)=78
78 % 10 = 8
So 9012-54-8 is a valid CAS Registry Number.

9012-54-8 Well-known Company Product Price

  • Brand
  • (Code)Product description
  • CAS number
  • Packaging
  • Price
  • Detail
  • Sigma

  • (C2605)  Cellulase from Aspergillus sp. Green Alternative  aqueous solution

  • 9012-54-8

  • C2605-50ML

  • 767.52CNY

  • Detail
  • Sigma

  • (C2605)  Cellulase from Aspergillus sp. Green Alternative  aqueous solution

  • 9012-54-8

  • C2605-250ML

  • 1,842.75CNY

  • Detail
  • Sigma

  • (C9748)  Cellulase from Trichoderma longibrachiatum Green Alternative  powder, ≥1.0 unit/mg solid

  • 9012-54-8

  • C9748-100G

  • 1,302.21CNY

  • Detail
  • Sigma

  • (C0615)  Cellulase from Trichoderma sp. Green Alternative  powder, ≥5,000 units/g solid

  • 9012-54-8

  • C0615-1G

  • 1,904.76CNY

  • Detail

9012-54-8SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 12, 2017

Revision Date: Aug 12, 2017

1.Identification

1.1 GHS Product identifier

Product name Cellulase from Aspergillus niger

1.2 Other means of identification

Product number -
Other names 2,6-Bis(4-fluorobenzal)cyclohexanone

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:9012-54-8 SDS

9012-54-8Upstream product

9012-54-8Downstream Products

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 9012-54-8