Welcome to LookChem.com Sign In|Join Free

CAS

  • or

1202-25-1

Post Buying Request

1202-25-1 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

1202-25-1 Usage

Uses

Methyl 4-(dimethylamino)benzoate

Check Digit Verification of cas no

The CAS Registry Mumber 1202-25-1 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 1,2,0 and 2 respectively; the second part has 2 digits, 2 and 5 respectively.
Calculate Digit Verification of CAS Registry Number 1202-25:
(6*1)+(5*2)+(4*0)+(3*2)+(2*2)+(1*5)=31
31 % 10 = 1
So 1202-25-1 is a valid CAS Registry Number.
InChI:InChI=1/C10H13NO2/c1-11(2)9-6-4-8(5-7-9)10(12)13-3/h4-7H,1-3H3

1202-25-1 Well-known Company Product Price

  • Brand
  • (Code)Product description
  • CAS number
  • Packaging
  • Price
  • Detail
  • Alfa Aesar

  • (A12057)  Methyl 4-dimethylaminobenzoate, 98+%   

  • 1202-25-1

  • 10g

  • 501.0CNY

  • Detail
  • Alfa Aesar

  • (A12057)  Methyl 4-dimethylaminobenzoate, 98+%   

  • 1202-25-1

  • 50g

  • 2184.0CNY

  • Detail
  • Alfa Aesar

  • (A12057)  Methyl 4-dimethylaminobenzoate, 98+%   

  • 1202-25-1

  • 250g

  • 8335.0CNY

  • Detail

1202-25-1SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 20, 2017

Revision Date: Aug 20, 2017

1.Identification

1.1 GHS Product identifier

Product name methyl 4-(dimethylamino)benzoate

1.2 Other means of identification

Product number -
Other names Methyl 4-dimethylaminobenzoate

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:1202-25-1 SDS

1202-25-1Relevant articles and documents

The development of coumarin Schiff base system applied as highly selective fluorescent/colorimetric probes for Cu2+ and tumor biomarker glutathione detection

Wang, Zhi-Gang,Ding, Xiao-Jing,Huang, Yu-Ying,Yan, Xiao-Jing,Ding, Bin,Li, Qing-Zhong,Xie, Cheng-Zhi,Xu, Jing-Yuan

, (2020)

Overexpression of tumor biomarker glutathione (GSH) has been documented in numerous types of cancers, therefor GSH-activated light-up chemosensors for tumor identification require great attention. A new colorimetric/fluorescent probe (7-(diethylamino)-2-oxo-2H-chromen-3-yl)methylene)-4-(dimethylamino) benzohydrazide (HL) was prepared, which could be applied in discriminating Cu2+ and further recognizing GSH based on its Cu complex. Firstly, the probe HL toward Cu2+ exhibited selective fluorescence quenching and obvious color change from yellow to orange-red under visible light. Further, when GSH was introduced to the Cu2+-2HL system, the fluorescence recovered rapidly due to the high affinity of GSH to Cu2+, meanwhile the color reverted back to former yellow. Based on fluorescence titration, the detection limits were calculated as 2.40 × 10?8 M and 1.29 × 10?7 M for Cu2+ and GSH, respectively. The combination mode of HL with Cu2+ was investigated in detail by Job plots, ESI-MS, FT-IR, and DFT studies. Probes HL and Cu2+-2HL showed relatively less toxicity and were employed for biological imaging in cells and zebrafish. Remarkably, the detection for endogenous GSH by this developed sensor platform implied great potential application prospect in cancer diagnosis.

A chromone hydrazide Schiff base fluorescence probe with high selectivity and sensitivity for the detection and discrimination of human serum albumin (HSA) and bovine serum albumin (BSA)

Fan, Jing,Li, Qing-Zhong,Li, Zhe,Liu, Hai-Bo,Wang, Zhi-Gang,Xie, Cheng-Zhi,Xu, Jing-Yuan,Yan, Xiao-Jing

, (2021/10/12)

The discrimination and identification of human serum albumin (HSA) and bovine serum albumin (BSA) is very important, which is due to the vital roles of two SAs in biological and pharmaceutical research. Based on structural screening and docking calculation from a series of homologues, a coumarin Schiff base fluorescent probe 3-hydroxy-N′-((4-oxo-4H-chromen-3-yl)methylene)-2-naphthohydrazide (HCNH) has been designed and synthesized, which could effectively discriminate HSA and BSA. The probe HCNH exhibited superior sensitivity toward HSA and BSA with the detection limits of 10.62 nM and 16.03 nM in PBS solution, respectively. The binding mechanism of HCNH with SAs was studied by Job's plot analysis, SA destruction and displacement assay. Molecular docking and DFT methods were utilized to provide deep insight into the spatial conformation change of HCNH and binding sites in HSA/BSA. The conformation of HCNH was significantly influenced by the microenvironment provided by HSA and BSA, therefore its fluorescence emission was affected correspondingly. Non-toxic probe HCNH could be successfully used for fluorescence bio-imaging of HSA in cancer cells, which is significantly different from normal cells and favors the application in medical diagnosis.

CO2-tuned highly selective reduction of formamides to the corresponding methylamines

Chao, Jianbin,Guo, Zhiqiang,Pang, Tengfei,Wei, Xuehong,Xi, Chanjuan,Yan, Leilei

supporting information, p. 7534 - 7538 (2021/10/12)

We herein describe an efficient, CO2-tuned and highly selective C-O bond cleavage of N-methylated formanilides. With easy-to-handle and commercially available NaBH4 as the reductant, a variety of formanilides could be turned into the desired tertiary amines in moderate to excellent yields. The role of CO2 has been investigated in detail, and the mechanism is proposed on the basis of experiments.

Additive-freeN-methylation of amines with methanol over supported iridium catalyst

Liu, Xiang,Loh, Teck-Peng,Qiang, Wenwen,Wang, Jing,Ye, Sen,Zhu, Longfei

, p. 3364 - 3375 (2021/06/06)

An efficient and versatile zinc oxide-supported iridium (Ir/ZnO) catalyst was developed to catalyze the additive-freeN-methylation of amines with methanol. Mechanistic studies suggested that the high catalytic reactivity is rooted in the small sizes (1.4 nm) of Ir nanoparticles and the high ratio (93%) of oxidized iridium species (IrOx, Ir3+and Ir4+) on the catalyst. Moreover, the delicate cooperation between the IrOxand ZnO support also promoted its high reactivity. The selectivity of this catalyticN-methylation was controllable between dimethylation and monomethylation by carefully tuning the catalyst loading and reaction solvent. Specifically, neat methanol with high catalyst loading (2 mol% Ir) favored the formation ofN,N-dimethylated amine, while the mesitylene/methanol mixture with low catalyst loading (0.5 mol% Ir) was prone to producing mono-N-methylated amines. An environmentally benign continuous flow system with a recycled mode was also developed for the efficient production ofN-methylated amines. With optimal flow rates and amine concentrations, a variety ofN-methylamines were produced with good to excellent yields in this Ir/ZnO-based flow system, providing a starting point for the clean and efficient production ofN-methylamines with this cost-effective chemical process.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 1202-25-1