Welcome to LookChem.com Sign In|Join Free

CAS

  • or

16071-26-4

Post Buying Request

16071-26-4 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

16071-26-4 Usage

General Description

(R)-2-chloro-diphenylmethanol, also known as R-CDPM, is a chemical compound with the molecular formula C13H11ClO. It is a chiral compound, meaning that it has a non-superimposable mirror image. R-CDPM is commonly used as an intermediate in the synthesis of pharmaceuticals and agrochemicals. It has also been investigated for its potential use as a chiral auxiliary in organic synthesis. Additionally, R-CDPM has been studied for its antimicrobial and antioxidant properties, making it potentially useful in the development of new drugs and functional materials. Overall, R-CDPM is a versatile chemical with various potential applications in the pharmaceutical and agricultural industries.

Check Digit Verification of cas no

The CAS Registry Mumber 16071-26-4 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 1,6,0,7 and 1 respectively; the second part has 2 digits, 2 and 6 respectively.
Calculate Digit Verification of CAS Registry Number 16071-26:
(7*1)+(6*6)+(5*0)+(4*7)+(3*1)+(2*2)+(1*6)=84
84 % 10 = 4
So 16071-26-4 is a valid CAS Registry Number.
InChI:InChI=1/C13H11ClO/c14-12-9-5-4-8-11(12)13(15)10-6-2-1-3-7-10/h1-9,13,15H/t13-/m1/s1

16071-26-4SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 17, 2017

Revision Date: Aug 17, 2017

1.Identification

1.1 GHS Product identifier

Product name 2-chlorobenzhydrol

1.2 Other means of identification

Product number -
Other names BENZENEMETHANOL,2-CHLORO-A-PHENYL-, (AR)-

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:16071-26-4 SDS

16071-26-4Relevant articles and documents

Bio-inspired asymmetric aldehyde arylations catalyzed by rhodium-cyclodextrin self-inclusion complexes

Asahi, Kaoru,Fujiwara, Shin-Ichi,Iwasaki, Takanori,Kambe, Nobuaki,Takahashi, Ryota,Tsuda, Susumu,Ueda, Ryoji,Yamauchi, Hiroki

supporting information, p. 801 - 807 (2022/02/03)

Transition-metal catalysts are powerful tools for carbon-carbon bond-forming reactions that are difficult to achieve using native enzymes. Enzymes that exhibit inherent selectivities and reactivities through host-guest interactions have inspired widesprea

4-Methyltetrahydropyran (4-MeTHP): Application as an Organic Reaction Solvent

Kobayashi, Shoji,Tamura, Tomoki,Yoshimoto, Saki,Kawakami, Takashi,Masuyama, Araki

, p. 3921 - 3937 (2019/11/11)

4-Methyltetrahydropyran (4-MeTHP) is a hydrophobic cyclic ether with potential for industrial applications. We herein report, for the first time, a comprehensive study on the performance of 4-MeTHP as an organic reaction solvent. Its broad application to organic reactions includes radical, Grignard, Wittig, organometallic, halogen-metal exchange, reduction, oxidation, epoxidation, amidation, esterification, metathesis, and other miscellaneous organic reactions. This breadth suggests 4-MeTHP can serve as a substitute for conventional ethers and harmful halogenated solvents. However, 4-MeTHP was found incompatible with strong Lewis acids, and the C?O bond was readily cleaved by treatment with BBr3. Moreover, the radical-based degradation pathways of 4-MeTHP, THP and 2-MeTHF were elucidated on the basis of GC-MS analyses. The data reported herein is anticipated to be useful for a broad range of synthetic chemists, especially industrial process chemists, when selecting the reaction solvent with green chemistry perspectives.

Diaryl hydroxylamines as pan or dual inhibitors of indoleamine 2,3-dioxygenase-1, indoleamine 2,3-dioxygenase-2 and tryptophan dioxygenase

Winters, Maria,DuHadaway, James B.,Pham, Khoa N.,Lewis-Ballester, Ariel,Badir, Shorouk,Wai, Jenny,Sheikh, Eesha,Yeh, Syun-Ru,Prendergast, George C.,Muller, Alexander J.,Malachowski, William P.

supporting information, p. 455 - 464 (2018/11/25)

Tryptophan (Trp) catabolizing enzymes play an important and complex role in the development of cancer. Significant evidence implicates them in a range of inflammatory and immunosuppressive activities. Whereas inhibitors of indoleamine 2,3-dioxygenase-1 (IDO1) have been reported and analyzed in the clinic, fewer inhibitors have been described for tryptophan dioxygenase (TDO) and indoleamine 2,3-dioxygenase-2 (IDO2) which also have been implicated more recently in cancer, inflammation and immune control. Consequently the development of dual or pan inhibitors of these Trp catabolizing enzymes may represent a therapeutically important area of research. This is the first report to describe the development of dual and pan inhibitors of IDO1, TDO and IDO2.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 16071-26-4