Welcome to LookChem.com Sign In|Join Free

CAS

  • or

1713-31-1

Post Buying Request

1713-31-1 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

1713-31-1 Usage

Synthesis Reference(s)

Synthesis, p. 142, 1984 DOI: 10.1055/s-1984-30758

Check Digit Verification of cas no

The CAS Registry Mumber 1713-31-1 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 1,7,1 and 3 respectively; the second part has 2 digits, 3 and 1 respectively.
Calculate Digit Verification of CAS Registry Number 1713-31:
(6*1)+(5*7)+(4*1)+(3*3)+(2*3)+(1*1)=61
61 % 10 = 1
So 1713-31-1 is a valid CAS Registry Number.

1713-31-1SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name (+/-)-1,2-epoxytridecane

1.2 Other means of identification

Product number -
Other names undecyl-oxirane

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:1713-31-1 SDS

1713-31-1Relevant articles and documents

-

Cainelli et al.

, p. 6109,6113 (1971)

-

-

Bertini et al.

, p. 1047 (1969)

-

In situ fabricated MOF-cellulose composite as an advanced ROS deactivator-convertor: Fluoroswitchable bi-phasic tweezers for free chlorine detoxification and size-exclusive catalytic insertion of aqueous H2O2

Bankar, Balasaheb D.,Biradar, Ankush V.,Goswami, Ranadip,Neogi, Subhadip,Pillai, Renjith S.,Rajput, Sonal,Seal, Nilanjan

, p. 4316 - 4332 (2022/03/07)

Combining the merits of structural diversity, and purposeful implantation of task-specific functionalities, metal-organic frameworks (MOFs) instigate targeted reactive oxygen species (ROS) scavenging and concurrent detoxification via self-calibrated emission modulation. Then again, grafting of catalytically active sites in MOFs can benefit developing a greener protocol to convert ROS generators to technologically important building blocks, wherein tailorable MOF-composite fabrication is highly sought for practical applications, yet unexplored. The chemo-robust and hydrogen-bonded framework encompassing free -NH2 moiety affixed pores serves as an ultra-fast and highly regenerable fluoro-probe for selective detection of toxic ROS producers hypochlorite ion (ClO-) and H2O2 with record-level nanomolar sensitivity. While the bio-relevant antioxidant l-ascorbic acid (AA) imparts notable quenching to the MOF, a significant 3.5 fold emission enhancement with bi-phasic colorimetric variation ensues when it selectively scavenges ClO- from uni-directional porous channels through an unprecedented molecular tweezer approach. Apart from a battery of experimental evidence, density functional theory (DFT) results validate "on-off-on"fluoroswitching from redistribution of MOF orbital energy levels, and show guest-mediated exclusive transition from "Tight state"to "Loose state". The coordination frustrated metal site engineered pore-wall benefits the dual-functionalized MOF in converting the potential ROS generator H2O2via selective alkene epoxidation under mild-conditions. Importantly, sterically encumbered substrates exhibit poor conversion and demonstrate first-ever pore-fitting-induced size selectivity for this benign oxidation. Judiciously planned control experiments in combination with DFT-optimized intermediates provide proof-of-concept to the ionic route of ROS conversion. Considering an effective way to broaden the advanced applications of this crystalline material, reconfigurable MOF@cotton fiber (CF) is fabricated via in situ growth, which scavenges free chlorine and concomitantly squeezes it upon exposure to AA with obvious colorimetric changes over multiple real-life platforms. Furthermore, multi-cyclic alkene epoxidation by MOF@CF paves the way to futuristic continuous flow reactors that truly serves this smart composite as a bimodal ROS deactivator-convertor and explicitly denotes it as an advanced promising analogue from contemporary state-of-the-art materials.

Proton Switch in the Secondary Coordination Sphere to Control Catalytic Events at the Metal Center: Biomimetic Oxo Transfer Chemistry of Nickel Amidate Complex

Kim, Soohyung,Jeong, Ha Young,Kim, Seonghan,Kim, Hongsik,Lee, Sojeong,Cho, Jaeheung,Kim, Cheal,Lee, Dongwhan

supporting information, p. 4700 - 4708 (2021/02/12)

High-valent metal-oxo species are key intermediates for the oxygen atom transfer step in the catalytic cycles of many metalloenzymes. While the redox-active metal centers of such enzymes are typically supported by anionic amino acid side chains or porphyrin rings, peptide backbones might function as strong electron-donating ligands to stabilize high oxidation states. To test the feasibility of this idea in synthetic settings, we have prepared a nickel(II) complex of new amido multidentate ligand. The mononuclear nickel complex of this N5 ligand catalyzes epoxidation reactions of a wide range of olefins by using mCPBA as a terminal oxidant. Notably, a remarkably high catalytic efficiency and selectivity were observed for terminal olefin substrates. We found that protonation of the secondary coordination sphere serves as the entry point to the catalytic cycle, in which high-valent nickel species is subsequently formed to carry out oxo-transfer reactions. A conceptually parallel process might allow metalloenzymes to control the catalytic cycle in the primary coordination sphere by using proton switch in the secondary coordination sphere.

Regiocontrolled syntheses of FAHFAs and LC-MS/MS differentiation of regioisomers

Balas, Laurence,Bertrand-Michel, Justine,Viars, Fanny,Faugere, Julien,Lefort, Corinne,Caspar-Bauguil, Sylvie,Langin, Dominique,Durand, Thierry

supporting information, p. 9012 - 9020 (2016/10/07)

An efficient regiospecific total synthesis of several branched fatty acyl hydroxyl-fatty acids (FAHFA) has been achieved from available terminal alkenes and alkynes. The key steps feature a boron trifluoride mediated epoxide ring opening with acetylide carbanions, followed by hydrogenation of the alkyne function. The carboxylic acid of the hydroxylated chains is introduced at the last step of the synthesis to allow the esterification of the branched hydroxyl group by fatty acids beforehand. The chemical syntheses of a "linear" FAHFA and a branched FAHFA analog containing a Z-olefin in the hydroxyl-fatty acid chain are also reported. A LC-MS/MS method has been developed. Several reversed phase columns were compared. Regioisomers were separated.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 1713-31-1