Welcome to LookChem.com Sign In|Join Free

CAS

  • or

24318-41-0

Post Buying Request

24318-41-0 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

24318-41-0 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 24318-41-0 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 2,4,3,1 and 8 respectively; the second part has 2 digits, 4 and 1 respectively.
Calculate Digit Verification of CAS Registry Number 24318-41:
(7*2)+(6*4)+(5*3)+(4*1)+(3*8)+(2*4)+(1*1)=90
90 % 10 = 0
So 24318-41-0 is a valid CAS Registry Number.

24318-41-0SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name 4-methoxybenzyl benzoate

1.2 Other means of identification

Product number -
Other names p-methoxybenzyl benzoate

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:24318-41-0 SDS

24318-41-0Relevant articles and documents

Half-Sandwich Ruthenium Complexes Bearing Hemilabile κ2-(C,S)?Thioether-Functionalized NHC Ligands: Application to Amide Synthesis from Alcohol and Amine

Achard, Thierry,Bellemin-Laponnaz, Stéphane,Chen, Weighang,Egly, Julien,Maisse-Fran?ois, Aline

supporting information, (2022/01/20)

Amide synthesis is one of the most crucial transformations in chemistry and biology. Among various catalytic systems, N-heterocyclic carbene (NHC)-based ruthenium (Ru) catalyst systems have been proven to be active for direct synthesis of amides by sustainable acceptorless dehydrogenative Coupling of primary alcohols with amines. Most often, these catalytic systems usually use monodentate NHC and thus require an additional ligand to obtain high reactivity and selectivity. In this work, a series of cationic Ru(II)(η6-p-cymene) complexes with thioether-functionalized N-heterocyclic carbene ligands (imidazole and benzimidazole-based) have been prepared and fully characterized. These complexes have then been used in the amidation reaction and the most promising one (i. e. 3 c) has been applied on a large range of substrates. High conversions albeit with moderate yields have generally been obtained.

IrIII-Catalyzed direct syntheses of amides and esters using nitriles as acid equivalents: A photochemical pathway

Talukdar, Ranadeep

supporting information, p. 5303 - 5308 (2020/04/17)

An unprecedented IrIII[df(CF3)ppy]2(dtbbpy)PF6-catalyzed simple photochemical process for direct addition of amines and alcohols to the relatively less reactive nitrile triple bond is described herein. Various amides and esters are synthesized as the reaction products, with nitriles being the acid equivalents. A mini-library of different types of amides and esters is made using this mild and efficient process, which uses only 1 mol% of photocatalyst under visible light irradiation (λ = 445 nm). The reaction strategy is also efficient for gram-scale synthesis.

A metal-free approach for the synthesis of amides/esters with pyridinium salts of phenacyl bromides via oxidative C–C bond cleavage

Manasa, Kesari Lakshmi,Tangella, Yellaiah,Krishna, Namballa Hari,Alvala, Mallika

, p. 1864 - 1871 (2019/08/12)

An efficient, simple, and metal-free synthetic approach for the N- and O-benzoylation of various amines/benzyl alcohols with pyridinium salts of phenacyl bromides is demonstrated to generate the corresponding amides and esters. This protocol facilitates the oxidative cleavage of a C–C bond followed by formation of a new C–N/C–O bond in the presence of K2CO3. Various pyridinium salts of phenacyl bromides can be readily transformed into a variety of amides and esters which is an alternative method for the conventional amidation and esterification in organic synthesis. High functional group tolerance, broad substrate scope and operational simplicity are the prominent advantages of the current protocol.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 24318-41-0