Welcome to LookChem.com Sign In|Join Free

CAS

  • or

24936-41-2

Post Buying Request

24936-41-2 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

24936-41-2 Usage

Chemical Properties

WHITE GRANULAR CRYSTALLINE POWDER

Check Digit Verification of cas no

The CAS Registry Mumber 24936-41-2 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 2,4,9,3 and 6 respectively; the second part has 2 digits, 4 and 1 respectively.
Calculate Digit Verification of CAS Registry Number 24936-41:
(7*2)+(6*4)+(5*9)+(4*3)+(3*6)+(2*4)+(1*1)=122
122 % 10 = 2
So 24936-41-2 is a valid CAS Registry Number.

24936-41-2 Well-known Company Product Price

  • Brand
  • (Code)Product description
  • CAS number
  • Packaging
  • Price
  • Detail
  • Aldrich

  • (182273)  Poly(4-methylstyrene)  average Mw ~72,000 by GPC, powder

  • 24936-41-2

  • 182273-10G

  • 692.64CNY

  • Detail

24936-41-2SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 12, 2017

Revision Date: Aug 12, 2017

1.Identification

1.1 GHS Product identifier

Product name 1-Methyl-4-vinylbenzene

1.2 Other means of identification

Product number -
Other names -

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:24936-41-2 SDS

24936-41-2Relevant articles and documents

Unprecedented reactions of substituted styrene derivatives with zirconocene-(1-butene) complex

Hanzawa, Yuji,Ikeuchi, Yutaka,Nakamura, Takanori,Taguchi, Takeo

, p. 6503 - 6506 (1995)

Reactions of alkoxymethyl substituted styrene derivatives with a stoichiometric and/or catalytic amount of zirconocene-(1-butene) complex ('Cp2Zr') causes an unexpected zirconocene insertion into benzylic position and/or homolytic coupling reaction of the styrene derivatives.

Victor et al.

, p. 65,69 (1974)

Photoredox Catalyzed Sulfonylation of Multisubstituted Allenes with Ru(bpy)3Cl2 or Rhodamine B

Chen, Jingyun,Chen, Shufang,Jiang, Jun,Lu, Qianqian,Shi, Liyang,Xu, Zekun,Yimei, Zhao

supporting information, (2021/11/09)

A highly regio- and stereoselective sulfonylation of allenes was developed that provided direct access to α, β-substituted unsaturated sulfone. By means of visible-light photoredox catalysis, the free radicals produced by p-toluenesulfonic acid reacted with multisubstituted allenes to obtain Markovnikov-type vinyl sulfones with Ru(bpy)3Cl2 or Rhodamine B as photocatalyst. The yield of this reaction could reach up to 91%. A series of unsaturated sulfones would be used for further transformation to some valuable compounds.

Preparation of Recyclable and Versatile Porous Poly(aryl thioether)s by Reversible Pd-Catalyzed C–S/C–S Metathesis

Morandi, Bill,Rivero-Crespo, Miguel A.,Toupalas, Georgios

supporting information, p. 21331 - 21339 (2021/12/17)

Porous organic materials (polymers and COFs) have shown a number of promising properties; however, the lability of their linkages often limits their robustness and can hamper downstream industrial application. Inspired by the outstanding chemical, mechanical, and thermal resistance of the 1D polymer poly(phenylene sulfide) (PPS), we have designed a new family of porous poly(aryl thioether)s, synthesized via a mild Pd-catalyzed C–S/C–S metathesis-based method, that merges the attractive features common to porous polymers and PPS in a single material. In addition, the method is highly modular, allowing to easily introduce application-oriented functionalities in the materials for a series of environmentally relevant applications including metal capture, metal sensing, and heterogeneous catalysis. Moreover, despite their extreme chemical resistance, the polymers can be easily recycled to recover the original monomers, offering an attractive perspective for their sustainable use. In a broader context, these results clearly demonstrate the untapped potential of emerging single-bond metathesis reactions in the preparation of new, recyclable materials.

Phosphorus and nitrogen-doped palladium nanomaterials support on coral-like carbon materials as the catalyst for semi-hydrogenation of phenylacetylene and mechanism study

Ma, Lei,Jiang, Pengbo,Wang, Kaizhi,Lan, Kai,Huang, Xiaokang,Yang, Ming,Gong, Li,Jia, Qi,Mu, Xiao,Xiong, Yucong,Li, Rong

, (2021/02/26)

In this work, two types of polyporous and coral-like materials (CN) with high specific surface area are prepared using sodium glutamate as a carrier. At the same time, a CN-supported phosphorus-nitrogen-doped palladium nanomaterial CN-P-Pd is synthesized and applied to the preparation of styrene by selective hydrogenation of phenylacetylene under mild conditions. As shown in the TEM images, Pd nanoparticles with a particle size of about 4.4 nm are uniformly dispersed on the surface of the carrier. The results of N2 adsorption–desorption reveal that the surface area of the prepared catalyst (CN-P-Pd) is 1307 m2g?1. In addition, the experimental exploration shows the intervention of P in carbon-nitrogen materials can contribute to improve the selectivity of the reaction, which can be attributed to the fact that P element can change the electron density of Pd. Meanwhile, it is found that the solvent not only affects the activity of catalyst, but also the selectivity of the reaction. Kinetic study shows the activation energy of the reaction is 4.5 kJ/mol. With the increase of the reaction temperature, the dissolution rate of hydrogen in the solvent gradually slows down, which inhibits the progress of the reduction reaction. Mechanistic studies demonstrate that the carbon-nitrogen materials have strong adsorption capacity for substrates, and also provide more adsorption sites for phenylacetylene. Additionally, the optimal catalyst (CN-P-Pd) also has high reaction activity to other alkynes and the conversion can reach at 95%. Moreover, the optimal catalyst can be reused several times without significant reduction in reaction activity.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 24936-41-2