Welcome to LookChem.com Sign In|Join Free

CAS

  • or

2782-40-3

Post Buying Request

2782-40-3 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

2782-40-3 Usage

Synthesis Reference(s)

Tetrahedron Letters, 35, p. 3313, 1994 DOI: 10.1016/S0040-4039(00)76894-8

Check Digit Verification of cas no

The CAS Registry Mumber 2782-40-3 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 2,7,8 and 2 respectively; the second part has 2 digits, 4 and 0 respectively.
Calculate Digit Verification of CAS Registry Number 2782-40:
(6*2)+(5*7)+(4*8)+(3*2)+(2*4)+(1*0)=93
93 % 10 = 3
So 2782-40-3 is a valid CAS Registry Number.
InChI:InChI=1/C11H15NO/c1-2-3-9-12-11(13)10-7-5-4-6-8-10/h4-8H,2-3,9H2,1H3,(H,12,13)

2782-40-3SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 17, 2017

Revision Date: Aug 17, 2017

1.Identification

1.1 GHS Product identifier

Product name N-butylbenzamide

1.2 Other means of identification

Product number -
Other names EINECS 220-485-4

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:2782-40-3 SDS

2782-40-3Relevant articles and documents

CuO-decorated magnetite-reduced graphene oxide: a robust and promising heterogeneous catalyst for the oxidative amidation of methylarenes in waterviabenzylic sp3C-H activation

Ebrahimi, Edris,Khalafi-Nezhad, Ali,Khalili, Dariush,Rousta, Marzieh

, p. 20007 - 20020 (2021/11/12)

A magnetite-reduced graphene oxide-supported CuO nanocomposite (rGO/Fe3O4-CuO) was preparedviaa facile chemical method and characterized by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), UV-vis spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), Brunauer-Emmett-Teller (BET) analysis, vibrating-sample magnetometry (VSM), and thermogravimetric (TG) analysis. The catalytic activity of the rGO/Fe3O4-CuO nanocomposite was probed in the direct oxidative amidation reaction of methylarenes with free amines. Various aromatic and aliphatic amides were prepared efficiently at room temperature from cheap raw chemicals usingtert-butyl hydroperoxide (TBHP) as a “green” oxidant and low-toxicity TBAI in water. This method combines the oxidation of methylarenes and amide bond formation into a single operation. Moreover, the synthesized nanocomposites can be separated from the reaction mixtures using an external magnet and reused in six consecutive runs without a noticeable decrease in the catalytic activity.

Z-Selective Fluoroalkenylation of (Hetero)Aromatic Systems by Iodonium Reagents in Palladium-Catalyzed Directed C?H Activation

Bényei, Attila,Domján, Attila,Egyed, Orsolya,Gonda, Zsombor,Novák, Zoltán,Sályi, Gerg?,Tóth, Balázs L.

supporting information, (2021/11/09)

The direct and catalytic incorporation of fluorine containing molecular motifs into organic compounds resulting high-value added chemicals represents a rapidly evolving part of synthetic methodologies, thus this area is in the focus of pharmaceutical and agrochemical research. Herein we report a stereoselective procedure for direct fluorovinylation of aromatic and heteroaromatic scaffolds. This methodology development has been realized by palladium-catalyzed ortho C?H activation reaction of aniline derivatives featuring the regioselectivity via directing groups such as secondary of tertiary amides, ureas or ketones. The application of non-symmetrical aryl(fluoroalkenyl)-iodonium salts as fluoroalkenylating agents allowed mild reaction conditions in general for this transformation. The scope and limitations have been thoroughly investigated and the feasibility has been demonstrated by more than 50 examples.

A CO2-Catalyzed Transamidation Reaction

Yang, Yang,Liu, Jian,Kamounah, Fadhil S.,Ciancaleoni, Gianluca,Lee, Ji-Woong

, p. 16867 - 16881 (2021/11/18)

Transamidation reactions are often mediated by reactive substrates in the presence of overstoichiometric activating reagents and/or transition metal catalysts. Here we report the use of CO2as a traceless catalyst: in the presence of catalytic amounts of CO2, transamidation reactions were accelerated with primary, secondary, and tertiary amide donors. Various amine nucleophiles including amino acid derivatives were tolerated, showcasing the utility of transamidation in peptide modification and polymer degradation (e.g., Nylon-6,6). In particular,N,O-dimethylhydroxyl amides (Weinreb amides) displayed a distinct reactivity in the CO2-catalyzed transamidation versus a N2atmosphere. Comparative Hammett studies and kinetic analysis were conducted to elucidate the catalytic activation mechanism of molecular CO2, which was supported by DFT calculations. We attributed the positive effect of CO2in the transamidation reaction to the stabilization of tetrahedral intermediates by covalent binding to the electrophilic CO2

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 2782-40-3