Welcome to LookChem.com Sign In|Join Free

CAS

  • or

3297-72-1

Post Buying Request

3297-72-1 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

3297-72-1 Usage

Description

Phenylisoquinoline is a chemical compound that can be used as a ligand to synthesize a variety of OLED (Organic Light Emitting Diode) dopants. It is a white to light yellow solid with unique chemical properties that make it suitable for this application.

Uses

Used in OLED Industry:
Phenylisoquinoline is used as a ligand for synthesizing OLED dopants, which are essential components in the production of OLEDs. These dopants enhance the performance and efficiency of OLEDs, making them brighter, more energy-efficient, and longer-lasting.
Phenylisoquinoline is used as a chemical intermediate for the synthesis of various organic compounds and pharmaceuticals. Its unique structure and properties make it a valuable building block in the development of new drugs and materials.

Check Digit Verification of cas no

The CAS Registry Mumber 3297-72-1 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 3,2,9 and 7 respectively; the second part has 2 digits, 7 and 2 respectively.
Calculate Digit Verification of CAS Registry Number 3297-72:
(6*3)+(5*2)+(4*9)+(3*7)+(2*7)+(1*2)=101
101 % 10 = 1
So 3297-72-1 is a valid CAS Registry Number.
InChI:InChI=1/C15H11N/c1-2-7-13(8-3-1)15-14-9-5-4-6-12(14)10-11-16-15/h1-11H

3297-72-1 Well-known Company Product Price

  • Brand
  • (Code)Product description
  • CAS number
  • Packaging
  • Price
  • Detail
  • TCI America

  • (P1731)  1-Phenylisoquinoline  >98.0%(GC)(T)

  • 3297-72-1

  • 1g

  • 680.00CNY

  • Detail
  • TCI America

  • (P1731)  1-Phenylisoquinoline  >98.0%(GC)(T)

  • 3297-72-1

  • 5g

  • 2,380.00CNY

  • Detail
  • Aldrich

  • (757217)  1-Phenylisoquinoline  97%

  • 3297-72-1

  • 757217-1G

  • 1,478.88CNY

  • Detail

3297-72-1SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 11, 2017

Revision Date: Aug 11, 2017

1.Identification

1.1 GHS Product identifier

Product name Phenylisoquinoline

1.2 Other means of identification

Product number -
Other names 2-phenylisoquinoline

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:3297-72-1 SDS

3297-72-1Relevant articles and documents

New synthesis of isoquinoline derivatives by reactions of 2-(2-methoxyethenyl)benzonitriles with organolithiums and lithium dialkylamides

Kobayashi, Kazuhiro,Shiokawa, Taiyo,Morikawa, Osamu,Konishi, Hisatoshi

, p. 236 - 237 (2004)

A simple and efficient synthesis of 1-alkyl(or aryl)isoquinoline and isoquinolin-1-amine derivatives based on intramolecular cyclization of 2-(2-methoxyethenyl)benzonitriles initiated by the addition of alkyl(or aryl)lithiums and lithium dialkylamides to the nitrile carbons, respectively, is described.

A series of red-light-emitting ionic iridium complexes: Structures, excited state properties, and application in electroluminescent devices

Liu, Shu-Juan,Zhao, Qiang,Fan, Qu-Li,Huang, Wei

, p. 2177 - 2185 (2008)

A series of ionic diiminoiridium complexes [Ir(piq-C∧N) 2(L-N∧N)](PF6) were prepared, where piq-C∧N is 1-phenylisoquinolinato and L-N∧N are bidentate N-coordinating ligands: 2,2′-bipyridine (bpy), 4,4′-dimethyl-2,2′-bipyridine (mbpym), 5,5′-bis(thiopen-2-yl)-2,2′-bipyridine (tbpyt), and 5,5′-bis(9,9-dioctylfluoren-2-yl)-2,2′-bipyridine (FbpyF). X-ray diffraction studies of [Ir(piq)2(mbpym)](PF6) revealed that the iridium center adopts a distorted octahedral geometry. All complexes exhibited intense and long-lived emission at room temperature. The substituents on the 2,2′-bipyridine moieties influence the photophysical and electrochemical properties. The excited states were investigated through theoretical calculations together with photophysical and electrochemical properties. It was found that the excited state of the [Ir(piq) 2(FbpyF)](PF6) complex can be assigned to a mixed character of 3LC (πN∧N→π *N∧N), 3MLCT, 3LLCT (π C∧N→π*N∧N), and 3LC (πC∧N→π*C∧N). In addition, the alkylfluorene-substituted complex, [Ir(piq)2(FbpyF)](PF6), had relatively high quantum efficiency and good film-forming ability, and it was expected to be a good candidate for lighting and display applications. A nondoped, single-layer device that incorporates this complex as a light-emitting layer was fabricated and red phosphorescence was obtained. Wiley-VCH Verlag GmbH & Co. KGaA, 2008.

Novel cyclometalated Ru(II) complexes containing isoquinoline ligands: Synthesis, characterization, cellular uptake and in vitro cytotoxicity

Chen, Jincan,Wang, Jie,Deng, Yuanyuan,Li, Baojun,Li, Chengpeng,Lin, Yuxue,Yang, Dongbin,Zhang, Huanyun,Chen, Lanmei,Wang, Tao

, (2020)

Two novel cyclometalated Ru(II) complexes containing isoquinoline ligand, [Ru(bpy)2(1-Ph-IQ)](PF6), (bpy = 2,2′-bipyridine; 1-Ph-IQ = 1-phenylisoquinoline; RuIQ-1) and [Ru(phen)2(1-Ph-IQ)](PF6) (phen = 1,10-phenanthroline; RuIQ-2) were found to show high cytotoxic activity against NCI–H460, A549, HeLa and MCF-7 cell lines. Notably, both of them exhibited IC50 values that were an order of magnitude lower than those of clinical cisplatin and two structurally similar Ru(II)-isoquinoline complexes [Ru(bpy)2(1-Py-IQ)](PF6)2 (Ru3) and [Ru(phen)2(1-Py-IQ)](PF6)2 (Ru4) (1-Py-IQ = 1-pyridine-2-yl). The cellular uptake and intracellular localization displayed that the two cyclometalated Ru(II) complexes entered NCI–H460 cancer cells dominantly via endocytosis pathway, and preferentially distributed in the nucleus. Further investigations on the apoptosis-inducing mechanisms of RuIQ-1 and RuIQ-2 revealed that the two complexes could cause S, G2/M double-cycle arrest by regulating cell cycle related proteins. The two complexes also could reduce the mitochondrial membrane potential (MMP), promote the generation of intracellular ROS and trigger DNA damage, and then lead to apoptosis-mediated cell death. More importantly, RuIQ-2 exhibits low toxicity both towards normal HBE cells in vitro and zebrafish embryos in vivo. Accordingly, the developed complexes hold great potential to be developed as novel therapeutics for effective and low-toxic cancer treatment.

Geometric and electronic effects on the performance of a bifunctional Ru2P catalyst in the hydrogenation and acceptorless dehydrogenation of N-heteroarenes

Shao, Fangjun,Yao, Zihao,Gao, Yijing,Zhou, Qiang,Bao, Zhikang,Zhuang, Guilin,Zhong, Xing,Wu, Chuan,Wei, Zhongzhe,Wang, Jianguo

, p. 1185 - 1194 (2021/02/16)

The development of bifunctional catalysts for the efficient hydrogenation and acceptorless dehydrogenation of N-heterocycles is a challenge. In this study, Ru2P/AC effectively promoted reversible transformations between unsaturated and saturated N-heterocycles affording yields of 98% and 99%, respectively. Moreover, a remarkable enhancement in the reusability of Ru2P/AC was observed compared with other Ru-based catalysts. According to density functional theory calculations, the superior performance of Ru2P/AC was ascribed to specific synergistic factors, namely geometric and electronic effects induced by P. P greatly reduced the large Ru-Ru ensembles and finely modified the electronic structures, leading to a low reaction barrier and high desorption ability of the catalyst, further boosting the hydrogenation and acceptorless dehydrogenation processes.

Transition metal complex, mixture, composition and organic electronic device

-

Paragraph 0312; 0325; 0326, (2021/06/12)

The invention discloses a transition metal complex containing gold (Au). The transition metal complex is shown as a general formula (1). According to the metal complex disclosed by the invention, due to a relatively stable six-membered ring aniline structure, the metal complex can be used as a doping material of a light-emitting layer in an organic electronic light-emitting device, so the stability of the device is improved, and meanwhile, the starting voltage is reduced to prolong the service life of the device.

Transition metal complex, polymer, mixture, composition and organic electronic device

-

Paragraph 0237-0240, (2021/06/22)

The invention discloses a transition metal complex, a polymer, a mixture, a composition and an organic electronic device. According to the transition metal complex provided by the invention, because the transition metal complex contains an ester group and a relatively stable six-membered ring structure, the complex has excellent electron transmission capability, and can improve the luminous efficiency and prolong the service life of the device when being used as a luminescent layer doping material in an organic electronic device, especially an OLED (Organic Light Emitting Diode).

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 3297-72-1