Welcome to LookChem.com Sign In|Join Free

CAS

  • or

487-26-3

Post Buying Request

487-26-3 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

487-26-3 Usage

Chemical Properties

VERY SLIGHTLY YELLOW POWDER

Uses

Different sources of media describe the Uses of 487-26-3 differently. You can refer to the following data:
1. Propafenone (P757500) impurity.
2. Flavanone was used in HPLC coupled to electrospray ion trap mass spectrometric method for separation and detection of natural flavonoid aglycones. Silibinin, a flavanone, was used in a variety of biological functions.

Definition

ChEBI: The simplest member of the class of flavanones that consists of flavan bearing an oxo substituent at position 4.

Synthesis Reference(s)

Tetrahedron Letters, 29, p. 241, 1988 DOI: 10.1016/S0040-4039(00)80065-9

General Description

Flavanone is a white to off white powder. Monitoring of flavanone content can be useful in characterizing the authenticity of lemon juice, of measuring the adulteration of citrus juices and identifying the presence of orange juice in fruit drinks. Hesperidin is the major flavanone present in the juices and wines obtained from Robinson, Fremont and Satsuma mandarins.

Check Digit Verification of cas no

The CAS Registry Mumber 487-26-3 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 4,8 and 7 respectively; the second part has 2 digits, 2 and 6 respectively.
Calculate Digit Verification of CAS Registry Number 487-26:
(5*4)+(4*8)+(3*7)+(2*2)+(1*6)=83
83 % 10 = 3
So 487-26-3 is a valid CAS Registry Number.
InChI:InChI=1/C15H12O2/c16-13-10-15(11-6-2-1-3-7-11)17-14-9-5-4-8-12(13)14/h1-9,15H,10H2/t15-/m1/s1

487-26-3 Well-known Company Product Price

  • Brand
  • (Code)Product description
  • CAS number
  • Packaging
  • Price
  • Detail
  • TCI America

  • (F0255)  Flavanone  >98.0%(GC)

  • 487-26-3

  • 5g

  • 260.00CNY

  • Detail
  • TCI America

  • (F0255)  Flavanone  >98.0%(GC)

  • 487-26-3

  • 25g

  • 575.00CNY

  • Detail
  • Alfa Aesar

  • (B22587)  Flavanone, 98+%   

  • 487-26-3

  • 10g

  • 408.0CNY

  • Detail
  • Alfa Aesar

  • (B22587)  Flavanone, 98+%   

  • 487-26-3

  • 50g

  • 990.0CNY

  • Detail
  • Aldrich

  • (102032)  Flavanone  98%

  • 487-26-3

  • 102032-10G

  • 428.22CNY

  • Detail

487-26-3SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 13, 2017

Revision Date: Aug 13, 2017

1.Identification

1.1 GHS Product identifier

Product name flavanone

1.2 Other means of identification

Product number -
Other names 4-Flavanone

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:487-26-3 SDS

487-26-3Relevant articles and documents

Effect of Li on the catalytic activity of MgO for the synthesis of flavanone

Cortes-Concepcion, Jose A.,Patcas, Florian,Amiridis, Michael D.

, p. 1 - 8 (2010)

We have investigated the effects of Li on the structure, surface basicity and catalytic activity of MgO for the synthesis of flavanone. Introduction of low amounts of Li (i.e., ≤0.1 wt.%) was found to promote the rate of the Claisen-Schmidt condensation reaction, which is the first step in this process. However, at Li loadings above 0.1 wt.% a detrimental effect was observed, due to a concomitant decrease in surface area and increase in MgO crystallite size. A strong correlation was observed between surface-normalized basicity and catalytic activity. The increase in activity at higher levels of surface basicity can be attributed to the increased ability of Li-O- pairs to abstract a proton from the 2′-hydroxyacetophenone reactant, thus facilitating the adsorption and subsequent surface reactions of this molecule.

Mechano-chemical versus co-precipitation for the preparation of Y-modified LDHs for cyclohexene oxidation and Claisen-Schmidt condensations

Angelescu, Emilian,B?rjega, Ruxandra,Bucur, Ioana Cristina,Parvulescu, Vasile I.,Pavel, Octavian Dumitru,Stamate, Alexandra-Elisabeta,Z?voianu, Rodica

, (2020)

Y-modified LDHs with atomic Mg2+/(Al3++Y3+) of 3 and Al3+/Y3+ ratios of 0.5, 1 and 1.5 were prepared following two preparation methods, i.e. the co-precipitation and mechano-chemical one. The substitution of Al by Y in the brucite-type layer was less effective for the samples prepared by co-precipitation compared to those prepared via mechano-chemical route. In spite the fact yttrium has a larger ionic radius (0.9?) the structural characterizations of these solids confirmed that the layered structure incorporates part of it in the octahedral positions. Further, the reconstruction of the layered structure after an exposure to water for 1 h was more effective for the solid prepared by co-precipitation. The yttrium modified LDHs showed better catalytic activities for cyclohexene oxidation to the corresponding epoxide than the un-modified LDH sample. Then, mixed oxides derived from yttrium-LDH showed very high conversions and selectivities for the synthesis of chalcone.

The effect of solvents on the heterogeneous synthesis of flavanone over MgO

Drexler, Michele T.,Amiridis, Michael D.

, p. 136 - 146 (2003)

The effect of several solvents on the heterogeneous synthesis of flavanone from benzaldehyde and 2-hydroxyaceophenone over a solid MgO catalyst was studied experimentally through kinetic and FTIR spectroscopic studies. High boiling point solvents considered were dimethyl sulfoxide, tetralin, mesitylene, benzonitrile, and nitrobenzene. Dimethyl sulfoxide (DMSO) significantly promoted the rates of both steps used in this synthesis, i.e., the Claisen-Schmidt condensation reaction of benzaldehyde with 2-hydroxyacetophenone and the subsequent isomerization of the 2′-hydroxychalcone intermediate to flavanone. The effect was more pronounced for the second reaction. Even the presence of small amounts of DMSO in other solvents, e.g., benzonitrile and nitrobenzene, resulted in strong promotion of the flavanone synthesis scheme. The results of FTIR studies indicated the formation of strongly held surface sulfate species following the interaction of DMSO with the MgO surface. The presence of these sulfate species affected the adsorption behavior of benzaldehyde and 2-hydroxyacetophenone on the surface of the MgO catalyst and led to the formation of surface benzoate species. These differences might be responsible for the observed change in the catalytic behavior of MgO during the synthesis of flavanone in the presence on DMSO.

Chiral separation materials based on derivatives of 6-amino-6-deoxyamylose

Gao, Ya-Ya,Zhang, Yu-Hang,Zhang, Shan,Chen, Wei,Bai, Zheng-Wu

supporting information, p. 899 - 914 (2021/10/07)

In order to develop new type of chiral separation materials, in this study, 6-amino-6-deoxyamylose was used as chiral starting material with which 10 derivatives were synthesized. The amino group in 6-amino-6-deoxyamylose was selectively acylated and then the hydroxyl groups were carbamoylated yielding amylose 6-amido-6-deoxy-2,3-bis(phenylcarbamate)s, which were employed as chiral selectors (CSs) for chiral stationary phases of high-performance liquid chromatography. The resulted 6-amido-6-deoxyamyloses and amylose 6-amido-6-deoxy-2,3-bis(phenylcarbamate)s were characterized by IR, 1H NMR, and elemental analysis. Enantioseparation evaluations indicated that most of the CSs demonstrated a moderate chiral recognition capability. The 6-nonphenyl (6-nonPh) CS of amylose 6-cyclohexylformamido-6-deoxy-2,3-bis(3,5-dimethylphenylcarbamate) showed the highest enantioselectivity towards the tested chiral analytes; the phenyl-heterogeneous (Ph-hetero) CS of amylose 6-(4-methylbenzamido)-6-deoxy-2,3-bis(3,5-dimethylphenylcarbamate) baseline separated the most chiral analytes; the phenyl-homogeneous (Ph-homo) CS of amylose 6-(3,5-dimethylbenzamido)-6-deoxy-2,3-bis(3,5-dimethylphenylcarbamate) also exhibited a good enantioseparation capability among the developed CSs. Regarding Ph-hetero CSs, the enantioselectivity depended on the combination of the substituent at 6-position and that at 2- and 3-positions; as for Ph-homo CSs, the enantioselectivity was related to the substituent at 2-, 3-, and 6-positions; with respect to 6-nonPh CSs, the retention factor of most analytes on the corresponding CSPs was lower than that on Ph-hetero and Ph-homo CSPs in the same mobile phases, indicating π–π interactions did occur during enantioseparation. Although the substituent at 6-position could not provide π–π interactions, the 6-nonPh CSs demonstrated an equivalent or even higher enantioselectivity compared with the Ph-homo and Ph-hetero CSs.

Stereoselective reduction of flavanones by marine-derived fungi

Birolli, Willian G.,Nitschke, Marcia,Porto, André Luiz M.,Santos, Darlisson de A.,de Matos, Iara L.

, (2021/08/13)

Biotransformation is an alternative with great potential to modify the structures of natural and synthetic flavonoids. Therefore, the bioreduction of synthetic halogenated flavanones employing marine-derived fungi was described, aiming the synthesis of flavan-4-ols 3a-g with high enantiomeric excesses (ee) of both cis- and trans-diastereoisomers (up to >99% ee). Ten strains were screened for reduction of flavanone 2a in liquid medium and in phosphate buffer solution. The most selective strains Cladosporium sp. CBMAI 1237 and Acremonium sp. CBMAI1676 were employed for reduction of flavanones 2a-g. The fungus Cladosporium sp. CBMAI 1237 presented yields of 72–87% with 0–64% ee cis and 0–30% ee trans with diastereoisomeric ratio (dr) from 52:48 to 64:36 (cis:trans). Whereas Acremonium sp. CBMAI 1676 resulted in 31% yield with 77–99% ee of the cis and 95–99% ee of the trans-diastereoisomers 3a-g with a dr from 54:46 to 96:4 (cis:trans). To our knowledge, this is the first report of the brominated flavon-4-ols 3e and 3f. The use of fungi, with emphasis for these marine-derived strains, is an interesting approach for enantioselective reduction of halogenated flavanones. Therefore, this strategy can be explored to obtain enantioenriched compounds with biological activities.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 487-26-3