Welcome to LookChem.com Sign In|Join Free

CAS

  • or

51030-59-2

Post Buying Request

51030-59-2 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

51030-59-2 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 51030-59-2 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 5,1,0,3 and 0 respectively; the second part has 2 digits, 5 and 9 respectively.
Calculate Digit Verification of CAS Registry Number 51030-59:
(7*5)+(6*1)+(5*0)+(4*3)+(3*0)+(2*5)+(1*9)=72
72 % 10 = 2
So 51030-59-2 is a valid CAS Registry Number.

51030-59-2SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 13, 2017

Revision Date: Aug 13, 2017

1.Identification

1.1 GHS Product identifier

Product name 1-pent-4-en-2-ynyl-piperidine

1.2 Other means of identification

Product number -
Other names 1-Pent-4-en-2-inyl-piperidin

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:51030-59-2 SDS

51030-59-2Downstream Products

51030-59-2Relevant articles and documents

An Electrochemical Beckmann Rearrangement: Traditional Reaction via Modern Radical Mechanism

Tang, Li,Wang, Zhi-Lv,He, Yan-Hong,Guan, Zhi

, p. 4929 - 4936 (2020/08/21)

Abstract: Electrosynthesis as a potential means of introducing heteroatoms into the carbon framework is rarely studied. Herein, the electrochemical Beckmann rearrangement, i. e. the direct electrolysis of ketoximes to amides, is presented for the first time. Using a constant current as the driving force, the reaction can be easily carried out under neutral conditions at room temperature. Based on a series of mechanistic studies, a novel radical Beckmann rearrangement mechanism is proposed. This electrochemical Beckmann rearrangement does not follow the trans-migration rule of the classical Beckmann rearrangement.

Visible-light-induced Beckmann rearrangement by organic photoredox catalysis

Tang, Li,Wang, Zhi-Lv,Wan, Hai-Lan,He, Yan-Hong,Guan, Zhi

supporting information, p. 6182 - 6186 (2020/09/01)

A facile and general strategy for efficient direct conversion of oximes to amides using an inexpensive organic photocatalyst and visible light is described. This radical Beckmann rearrangement can be performed under mild conditions. Various alkyl aryl ketoximes and diaryl ketoximes can be effectively converted into the corresponding amides in excellent yields.

Scope and mechanism of a true organocatalytic beckmann rearrangement with a boronic acid/perfluoropinacol system under ambient conditions

Mo, Xiaobin,Morgan, Timothy D. R.,Ang, Hwee Ting,Hall, Dennis G.

supporting information, p. 5264 - 5271 (2018/04/24)

Catalytic activation of hydroxyl functionalities is of great interest for the production of pharmaceuticals and commodity chemicals. Here, 2-alkoxycarbonyl- and 2-phenoxycarbonyl-phenylboronic acid were identified as efficient catalysts for the direct and chemoselective activation of oxime N-OH bonds in the Beckmann rearrangement. This classical organic reaction provides a unique approach to prepare functionalized amide products that may be difficult to access using traditional amide coupling between carboxylic acids and amines. Using only 5 mol % of boronic acid catalyst and perfluoropinacol as an additive in a polar solvent mixture, the operationally simple protocol features mild conditions, a broad substrate scope, and a high functional group tolerance. A wide variety of diaryl, aryl-alkyl, heteroaryl-alkyl, and dialkyl oximes react under ambient conditions to afford high yields of amide products. Free alcohols, amides, carboxyesters, and many other functionalities are compatible with the reaction conditions. Investigations of the catalytic cycle revealed a novel boron-induced oxime transesterification providing an acyl oxime intermediate involved in a fully catalytic nonself-propagating Beckmann rearrangement mechanism. The acyl oxime intermediate was prepared independently and was subjected to the reaction conditions. It was found to be self-sufficient; it reacts rapidly, unimolecularly without the need for free oxime. A series of control experiments and 18O labeling studies support a true catalytic pathway involving an ionic transition structure with an active and essential role for the boronyl moiety in both steps of transesterification and rearrangement. According to 11B NMR spectroscopic studies, the additive perfluoropinacol provides a transient, electrophilic boronic ester that is thought to serve as an internal Lewis acid to activate the ortho-carboxyester and accelerate the initial, rate-limiting step of transesterification between the precatalyst and the oxime substrate.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 51030-59-2