Welcome to LookChem.com Sign In|Join Free

CAS

  • or

5203-14-5

Post Buying Request

5203-14-5 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

5203-14-5 Usage

Chemical Properties

white to light yellow crystal powder

Check Digit Verification of cas no

The CAS Registry Mumber 5203-14-5 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 5,2,0 and 3 respectively; the second part has 2 digits, 1 and 4 respectively.
Calculate Digit Verification of CAS Registry Number 5203-14:
(6*5)+(5*2)+(4*0)+(3*3)+(2*1)+(1*4)=55
55 % 10 = 5
So 5203-14-5 is a valid CAS Registry Number.
InChI:InChI=1/C11H13NO/c1-2-3-8-13-11-6-4-10(9-12)5-7-11/h4-7H,2-3,8H2,1H3

5203-14-5 Well-known Company Product Price

  • Brand
  • (Code)Product description
  • CAS number
  • Packaging
  • Price
  • Detail
  • Alfa Aesar

  • (A16570)  4-n-Butoxybenzonitrile, 97%   

  • 5203-14-5

  • 5g

  • 575.0CNY

  • Detail
  • Alfa Aesar

  • (A16570)  4-n-Butoxybenzonitrile, 97%   

  • 5203-14-5

  • 25g

  • 2393.0CNY

  • Detail
  • Alfa Aesar

  • (A16570)  4-n-Butoxybenzonitrile, 97%   

  • 5203-14-5

  • 100g

  • 7277.0CNY

  • Detail

5203-14-5SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 17, 2017

Revision Date: Aug 17, 2017

1.Identification

1.1 GHS Product identifier

Product name 4-butoxybenzonitrile

1.2 Other means of identification

Product number -
Other names 4-butyloxybenzonitrile

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:5203-14-5 SDS

5203-14-5Relevant articles and documents

Discriminating non-ylidic carbon-sulfur bond cleavages of sulfonium ylides for alkylation and arylation reactions

Fang, Jing,Li, Ting,Ma, Xiang,Sun, Jiuchang,Cai, Lei,Chen, Qi,Liao, Zhiwen,Meng, Lingkui,Zeng, Jing,Wan, Qian

, p. 288 - 292 (2021/07/25)

A sulfonium ylide participated alkylation and arylation under transition-metal free conditions is described. The disparate reaction pattern allowed the separate activation of non-ylidic S-alkyl and S-aryl bond. Under acidic conditions, sulfonium ylides serve as alkyl cation precursors which facilitate the alkylations. While under alkaline conditions, cleavage of non-ylidic S-aryl bond produces O-arylated compounds efficiently. The robustness of the protocols were established by the excellent compatibility of wide variety of substrates including carbohydrates.

Discovery and characterization of a novel perylenephotoreductant for the activation of aryl halides

Guo, Baodang,Huang, Shuping,Li, Jia,Li, Min,Liu, Xuanzhong,Rao, Yijian,Wu, Yawen,Yin, Huimin,Yuan, Zhenbo,Zhang, Yan

, p. 111 - 120 (2021/06/16)

To develop a photocatalyst with catalytical activity for substrates with low reactivities is always highly desired. Herein, based on the principle of structure–property relationships, we rationally designed the natural product cercosporin, the naturally occurring perylenequinonoid pigment, to develop a novel organic perylenephotoreductant, hexacetyl reduced cercosporin (HARCP), through structural manipulation. Compared with cercosporin, HARCP shows prominent electrochemical and photophysical characteristics with greatly improved photoreductive activity, fluorescence lifetime and fluorescence quantum yield. These properties allowed HARCP as a powerful photoreductant to efficiently realize a series of benchmark reactions, including photoreduction, alkoxylation and hydroxylation to construct C–H and C–O bonds using aryl halides as substrates under mild conditions, all of which have never been achieved by the same photocatalyst. Thus, this study well supports the notion that the principle between structural manipulation and photocatalytic activity is of great significance to design customized photocatalysts for photoredox chemistry.

Oxalohydrazide Ligands for Copper-Catalyzed C?O Coupling Reactions with High Turnover Numbers

Ray, Ritwika,Hartwig, John F.

supporting information, p. 8203 - 8211 (2021/03/08)

Here, we report a class of ligands based on oxalohydrazide cores and N-amino pyrrole and N-amino indole units that generates long-lived copper catalysts for couplings that form the C?O bonds in biaryl ethers. These Cu-catalyzed coupling of phenols with aryl bromides occurred with turnovers up to 8000, a value which is nearly two orders of magnitude higher than those of prior couplings to form biaryl ethers and nearly an order of magnitude higher than those of any prior copper-catalyzed coupling of aryl bromides and chlorides. This ligand also led to copper systems that catalyze the coupling of aryl chlorides with phenols and the coupling of aryl bromides and iodides with primary benzylic and aliphatic alcohols. A wide variety of functional groups including nitriles, halides, ethers, ketones, amines, esters, amides, vinylarenes, alcohols and boronic acid esters were tolerated, and reactions occurred with aryl bromides in pharmaceutically related structures.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 5203-14-5