Welcome to LookChem.com Sign In|Join Free

CAS

  • or

56441-55-5

Post Buying Request

56441-55-5 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

56441-55-5 Usage

General Description

ETHYL 4-(BENZYLOXY)BENZOATE is a chemical compound with the molecular formula C16H16O3. It is an ester, specifically the ethyl ester of 4-(benzyloxy)benzoic acid. ETHYL 4-(BENZYLOXY)BENZOATE is commonly used in the synthesis of various organic compounds and is often employed in the production of pharmaceuticals, fragrances, and flavors. It is a clear, colorless liquid with a faint, sweet aroma, and it is soluble in organic solvents such as ethanol and acetone. ETHYL 4-(BENZYLOXY)BENZOATE is primarily used as an intermediate in the chemical industry, and it is important in the development of various products in the fields of medicine and perfumery.

Check Digit Verification of cas no

The CAS Registry Mumber 56441-55-5 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 5,6,4,4 and 1 respectively; the second part has 2 digits, 5 and 5 respectively.
Calculate Digit Verification of CAS Registry Number 56441-55:
(7*5)+(6*6)+(5*4)+(4*4)+(3*1)+(2*5)+(1*5)=125
125 % 10 = 5
So 56441-55-5 is a valid CAS Registry Number.
InChI:InChI=1/C16H16O3/c1-2-18-16(17)14-8-10-15(11-9-14)19-12-13-6-4-3-5-7-13/h3-11H,2,12H2,1H3

56441-55-5 Well-known Company Product Price

  • Brand
  • (Code)Product description
  • CAS number
  • Packaging
  • Price
  • Detail
  • Alfa Aesar

  • (B20681)  Ethyl 4-(benzyloxy)benzoate, 97%   

  • 56441-55-5

  • 5g

  • 630.0CNY

  • Detail
  • Alfa Aesar

  • (B20681)  Ethyl 4-(benzyloxy)benzoate, 97%   

  • 56441-55-5

  • 25g

  • 1533.0CNY

  • Detail

56441-55-5SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 18, 2017

Revision Date: Aug 18, 2017

1.Identification

1.1 GHS Product identifier

Product name Ethyl 4-(benzyloxy)benzoate

1.2 Other means of identification

Product number -
Other names ethyl 4-phenylmethoxybenzoate

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:56441-55-5 SDS

56441-55-5Relevant articles and documents

Design, synthesis, and biological activity evaluation of 2-(benzo[b]thiophen-2-yl)-4-phenyl-4,5-dihydrooxazole derivatives as broad-spectrum antifungal agents

Zhao, Liyu,Sun, Yin,Yin, Wenbo,Tian, Linfeng,Sun, Nannan,Zheng, Yang,Zhang, Chu,Zhao, Shizhen,Su, Xin,Zhao, Dongmei,Cheng, Maosheng

, (2021/11/22)

To discover antifungal compounds with broad-spectrum and stable metabolism, a series of 2-(benzo[b]thiophen-2-yl)-4-phenyl-4,5-dihydrooxazole derivatives was designed and synthesized. Compounds A30-A34 exhibited excellent broad-spectrum antifungal activity against Candida albicans with MIC values in the range of 0.03–0.5 μg/mL, and against Cryptococcus neoformans and Aspergillus fumigatus with MIC values in the range of 0.25–2 μg/mL. In addition, compounds A31 and A33 showed high metabolic stability in human liver microsomes in vitro, with the half-life of 80.5 min and 69.4 min, respectively. Moreover, compounds A31 and A33 showed weak or almost no inhibitory effect on the CYP3A4 and CYP2D6. The pharmacokinetic evaluation in SD rats showed that compound A31 had suitable pharmacokinetic properties and was worthy of further study.

4-Alkyl-1,2,4-triazole-3-thione analogues as metallo-β-lactamase inhibitors

Gavara, Laurent,Legru, Alice,Verdirosa, Federica,Sevaille, Laurent,Nauton, Lionel,Corsica, Giuseppina,Mercuri, Paola Sandra,Sannio, Filomena,Feller, Georges,Coulon, Rémi,De Luca, Filomena,Cerboni, Giulia,Tanfoni, Silvia,Chelini, Giulia,Galleni, Moreno,Docquier, Jean-Denis,Hernandez, Jean-Fran?ois

supporting information, (2021/06/15)

In Gram-negative bacteria, the major mechanism of resistance to β-lactam antibiotics is the production of one or several β-lactamases (BLs), including the highly worrying carbapenemases. Whereas inhibitors of these enzymes were recently marketed, they only target serine-carbapenemases (e.g. KPC-type), and no clinically useful inhibitor is available yet to neutralize the class of metallo-β-lactamases (MBLs). We are developing compounds based on the 1,2,4-triazole-3-thione scaffold, which binds to the di-zinc catalytic site of MBLs in an original fashion, and we previously reported its promising potential to yield broad-spectrum inhibitors. However, up to now only moderate antibiotic potentiation could be observed in microbiological assays and further exploration was needed to improve outer membrane penetration. Here, we synthesized and characterized a series of compounds possessing a diversely functionalized alkyl chain at the 4-position of the heterocycle. We found that the presence of a carboxylic group at the extremity of an alkyl chain yielded potent inhibitors of VIM-type enzymes with Ki values in the μM to sub-μM range, and that this alkyl chain had to be longer or equal to a propyl chain. This result confirmed the importance of a carboxylic function on the 4-substituent of 1,2,4-triazole-3-thione heterocycle. As observed in previous series, active compounds also preferentially contained phenyl, 2-hydroxy-5-methoxyphenyl, naphth-2-yl or m-biphenyl at position 5. However, none efficiently inhibited NDM-1 or IMP-1. Microbiological study on VIM-2-producing E. coli strains and on VIM-1/VIM-4-producing multidrug-resistant K. pneumoniae clinical isolates gave promising results, suggesting that the 1,2,4-triazole-3-thione scaffold worth continuing exploration to further improve penetration. Finally, docking experiments were performed to study the binding mode of alkanoic analogues in the active site of VIM-2.

Development and application of a high-throughput screening assay for identification of small molecule inhibitors of the P. falciparum reticulocyte binding-like homologue 5 protein

Sleebs, Brad E.,Jarman, Kate E.,Frolich, Sonja,Wong, Wilson,Healer, Julie,Dai, Weiwen,Lucet, Isabelle S.,Wilson, Danny W.,Cowman, Alan F.

, p. 188 - 200 (2020/11/05)

The P. falciparum parasite, responsible for the disease in humans known as malaria, must invade erythrocytes to provide an environment for self-replication and survival. For invasion to occur, the parasite must engage several ligands on the host erythrocyte surface to enable adhesion, tight junction formation and entry. Critical interactions include binding of erythrocyte binding-like ligands and reticulocyte binding-like homologues (Rhs) to the surface of the host erythrocyte. The reticulocyte binding-like homologue 5 (Rh5) is the only member of this family that is essential for invasion and it binds to the basigin host receptor. The essential nature of Rh5 makes it an important vaccine target, however to date, Rh5 has not been targeted by small molecule intervention. Here, we describe the development of a high-throughput screening assay to identify small molecules which interfere with the Rh5-basigin interaction. To validate the utility of this assay we screened a known drug library and the Medicines for Malaria Box and demonstrated the reproducibility and robustness of the assay for high-throughput screening purposes. The screen of the known drug library identified the known leukotriene antagonist, pranlukast. We used pranlukast as a model inhibitor in a post screening evaluation cascade. We procured and synthesised analogues of pranlukast to assist in the hit confirmation process and show which structural moieties of pranlukast attenuate the Rh5 – basigin interaction. Evaluation of pranlukast analogues against P. falciparum in a viability assay and a schizont rupture assay show the parasite activity was not consistent with the biochemical inhibition of Rh5, questioning the developability of pranlukast as an antimalarial. The high-throughput assay developed from this work has the capacity to screen large collections of small molecules to discover inhibitors of P. falciparum Rh5 for future development of invasion inhibitory antimalarials.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 56441-55-5