Welcome to LookChem.com Sign In|Join Free

CAS

  • or

659-41-6

Post Buying Request

659-41-6 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

659-41-6 Usage

General Description

4-Fluoro Benzylamine Hydrochloride is a chemical compound that consists of a benzene ring with a fluorine atom and an amine group attached. It is commonly used in the synthesis of various pharmaceuticals and agrochemicals. 4-FLUORO BENZYLAMINE HYDROCHLORIDE is also used as a reagent in organic chemistry reactions, particularly in the formation of carbon-carbon and carbon-nitrogen bonds. It is a white crystalline solid that is soluble in water and organic solvents. 4-Fluoro Benzylamine Hydrochloride is an important intermediate in the production of various chemicals and is widely utilized in the pharmaceutical industry.

Check Digit Verification of cas no

The CAS Registry Mumber 659-41-6 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 6,5 and 9 respectively; the second part has 2 digits, 4 and 1 respectively.
Calculate Digit Verification of CAS Registry Number 659-41:
(5*6)+(4*5)+(3*9)+(2*4)+(1*1)=86
86 % 10 = 6
So 659-41-6 is a valid CAS Registry Number.
InChI:InChI=1/C7H8FN.ClH/c8-7-3-1-6(5-9)2-4-7;/h1-4H,5,9H2;1H

659-41-6SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 14, 2017

Revision Date: Aug 14, 2017

1.Identification

1.1 GHS Product identifier

Product name (4-fluorophenyl)methanamine,hydrochloride

1.2 Other means of identification

Product number -
Other names p-Fluorobenzylamine HCl

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:659-41-6 SDS

659-41-6Relevant articles and documents

Fabrication of ω-Transaminase@Metal-Organic Framework Biocomposites for Efficiently Synthesizing Benzylamines and Pyridylmethylamines

Chen, Lina,Ding, Yingying,Jiao, Qingcai,Liu, Junzhong,Yu, Jinhai,Zhang, Hongjuan,Zong, Weilu

, (2021/11/05)

In this study, ten ω-transaminases (ω-TAs) have been investigated to efficiently catalyze the synthesis of twenty-four functionalized benzylamines and pyridylmethylamines. We optimized the reactions, screened suitable amino donors and compared ω-transaminases activities for all aromatic aldehyde substrates. Under the optimized conditions, eighteen aromatic amines have been obtained with 60.4%–96.6% conversions and isolated only via simple extraction and recrystallization with 18.5%–81% yields on a preparative scale. Furthermore, we first immobilized the Bm-STA onto the MOFs via the physical adsorption to overcome the limitation of free enzyme and improve their industrial applications. The obtained Bm-STA/UiO-66-NH2 composites exhibited not only high enzymes loading (80.4 mg g?1) and enzyme activity recovery (95.8%), but also the better reusability, storage stability, pH stability and the tolerance to acetone and DMF.

Lithium compound catalyzed deoxygenative hydroboration of primary, secondary and tertiary amides

Bisai, Milan Kumar,Gour, Kritika,Das, Tamal,Vanka, Kumar,Sen, Sakya S.

supporting information, p. 2354 - 2358 (2021/03/03)

A selective and efficient route for the deoxygenative reduction of primary to tertiary amides to corresponding amines has been achieved with pinacolborane (HBpin) using simple and readily accessible 2,6-di-tert-butyl phenolate lithium·THF (1a) as a catalyst. Both experimental and DFT studies provide mechanistic insight. This journal is

Aluminum Metal-Organic Framework-Ligated Single-Site Nickel(II)-Hydride for Heterogeneous Chemoselective Catalysis

Antil, Neha,Kumar, Ajay,Akhtar, Naved,Newar, Rajashree,Begum, Wahida,Dwivedi, Ashutosh,Manna, Kuntal

, p. 3943 - 3957 (2021/04/12)

The development of chemoselective and heterogeneous earth-abundant metal catalysts is essential for environmentally friendly chemical synthesis. We report a highly efficient, chemoselective, and reusable single-site nickel(II) hydride catalyst based on robust and porous aluminum metal-organic frameworks (MOFs) (DUT-5) for hydrogenation of nitro and nitrile compounds to the corresponding amines and hydrogenolysis of aryl ethers under mild conditions. The nickel-hydride catalyst was prepared by the metalation of aluminum hydroxide secondary building units (SBUs) of DUT-5 having the formula of Al(μ2-OH)(bpdc) (bpdc = 4,4′-biphenyldicarboxylate) with NiBr2 followed by a reaction with NaEt3BH. DUT-5-NiH has a broad substrate scope with excellent functional group tolerance in the hydrogenation of aromatic and aliphatic nitro and nitrile compounds under 1 bar H2 and could be recycled and reused at least 10 times. By changing the reaction conditions of the hydrogenation of nitriles, symmetric or unsymmetric secondary amines were also afforded selectively. The experimental and computational studies suggested reversible nitrile coordination to nickel followed by 1,2-insertion of coordinated nitrile into the nickel-hydride bond occurring in the turnover-limiting step. In addition, DUT-5-NiH is also an active catalyst for chemoselective hydrogenolysis of carbon-oxygen bonds in aryl ethers to afford hydrocarbons under atmospheric hydrogen in the absence of any base, which is important for the generation of fuels from biomass. This work highlights the potential of MOF-based single-site earth-abundant metal catalysts for practical and eco-friendly production of chemical feedstocks and biofuels.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 659-41-6