Welcome to LookChem.com Sign In|Join Free

CAS

  • or

71591-21-4

Post Buying Request

71591-21-4 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

71591-21-4 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 71591-21-4 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 7,1,5,9 and 1 respectively; the second part has 2 digits, 2 and 1 respectively.
Calculate Digit Verification of CAS Registry Number 71591-21:
(7*7)+(6*1)+(5*5)+(4*9)+(3*1)+(2*2)+(1*1)=124
124 % 10 = 4
So 71591-21-4 is a valid CAS Registry Number.

71591-21-4SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 16, 2017

Revision Date: Aug 16, 2017

1.Identification

1.1 GHS Product identifier

Product name Z-Tyr-Gly-Gly-Phe-Leu-NH2

1.2 Other means of identification

Product number -
Other names -

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:71591-21-4 SDS

71591-21-4Downstream Products

71591-21-4Relevant articles and documents

Encapsulation of biologicals within silicate, siloxane, and hybrid sol- gel polymers: An efficient and generic approach

Gill, Iqbal,Ballesteros, Antonio

, p. 8587 - 8598 (2007/10/03)

The sol-gel encapsulation of labile biological materials with catalytic and recognition functions within robust polymer matrices remains a challenging task, despite the considerable research that has been focused on this field. Herein, we describe a new class of precursors, based around polyol silicates and polyol siloxanes, especially those derived from glycerol, that addresses problems faced with traditional bioencapsulation protocols. Poly(glyceryl silicate) (PGS) was prepared and employed for sol- gel bioentrapment, in an approach distinguished by a high biocompatibility and mild encapsulation conditions, and which enables the reproducible and efficient confinement of proteins and cells inside silica. The methodology was extended to metallosilicate, alkylsiloxane, functionalized siloxane, and composite sol-gels, thereby allowing the fabrication of a physicochemically diverse range of bio-doped polymers. The hybrid materials display activities approaching those of the free biologicals, together with the high stabilities and robustness that characterize sol-gel bioceramics. Indeed, the bioencapsulates performed better than those fabricated from tetramethoxysilane, poly(methyl silicate) or alcohol-free poly(silicic acid), even when the latter were doped with glycerol. The activity enhancements appear to derive at least in part from the unusual microstructure of PGS sol- gels, in particular their high porosity, although the underlying mechanisms are unclear. Differences in precursor hydrolysis/condensation; development of gel structure, biological-matrix interactions, precursor toxicity, and pore collapse probably all contribute to the observed efficiency of the PGS materials. The performances of the encapsulates are compared with conventional sol-biogels and other immobilizates, in representative biocatalyst, biosensor, and biodiagnostic applications.

Peptide Synthesis Mediated by Immobilized and Viable Baker's Yeast in Reverse Micelles: Synthesis of Leucine Enkephalin Analogues

Fadnavis, N. W.,Deshpande, A.,Chauhan, S.,Bhalerao, U. T.

, p. 1548 - 1550 (2007/10/02)

Cells of baker's yeast (Saccharomyces cerevisiae NCIM 3305) immobilized in calcium alginate beads are found to be viable in reverse micelles of bis(2-ethylhexyl)sulphosuccinate sodium salt 1 in iso-octane for days and were used for the first time for pept

Papain Catalysed Peptide Synthesis: Control of Amidase Activity and the Introduction of Unusual Amino Acids

Barbas, Carlos F. III,Wong, Chi-Huey

, p. 533 - 534 (2007/10/02)

Procedures for the papain catalysed synthesis of peptides containing D-amino acids and derivatives with control of the enzyme's amidase activity have been developed.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 71591-21-4