Welcome to LookChem.com Sign In|Join Free

CAS

  • or

347-84-2

Post Buying Request

347-84-2 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

347-84-2 Usage

Uses

1-(4-Fluorophenyl)-2-phenyl-ethanone is used in the preparation and evaluation of 2,3-diarylpyrazines and quinoxalines as selective COX-2 inhibitors.

Check Digit Verification of cas no

The CAS Registry Mumber 347-84-2 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 3,4 and 7 respectively; the second part has 2 digits, 8 and 4 respectively.
Calculate Digit Verification of CAS Registry Number 347-84:
(5*3)+(4*4)+(3*7)+(2*8)+(1*4)=72
72 % 10 = 2
So 347-84-2 is a valid CAS Registry Number.

347-84-2SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name 1-(4-fluorophenyl)-2-phenylethanone

1.2 Other means of identification

Product number -
Other names Benzyl 4-fluorophenyl ketone

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:347-84-2 SDS

347-84-2Relevant articles and documents

Electrochemical oxidation-induced benzyl C–H carbonylation for the synthesis of aromatic α-diketones

Tan, Yu-Fang,Chen, Yuan,Li, Rui-Xue,Guan, Zhi,He, Yan-Hong

supporting information, (2021/12/21)

Electrochemical oxidation-induced direct carbonylation of benzyl C–H bond for the synthesis of aromatic α-diketones is described. In this process, tetrabutylammonium iodide (nBu4NI) not only acts as an electrolyte, but its iodine anion is oxidized to an iodine radical at the anode, acting as a hydrogen atom transfer agent. The iodine radical extracts the benzyl hydrogen atom and causes the carbonylation of the benzyl position, where O2 in the air is used as an oxygen source.

Iron-Catalyzed Enantioselective Radical Carboazidation and Diazidation of α,β-Unsaturated Carbonyl Compounds

Dong, Shunxi,Feng, Xiaoming,He, Jun,Liu, Wen,Liu, Xiaohua,Pu, Maoping,Wu, Yun-Dong,Zhang, Tinghui

supporting information, p. 11856 - 11863 (2021/08/16)

Azidation of alkenes is an efficient protocol to synthesize organic azides which are important structural motifs in organic synthesis. Enantioselective radical azidation, as a useful strategy to install a C-N3 bond, remains challenging due to the inherently instability and unique structure of radicals. Here, we disclose an efficient enantioselective radical carboazidation and diazidation of α,β-unsaturated ketones and amides catalyzed by chiral N,N′-dioxide/Fe(OTf)2 complexes. An array of substituted alkenes was transformed to the corresponding α-azido carbonyl derivatives in good to excellent enantioselectivities, benefiting the preparation of chiral α-amino ketones, vicinal amino alcohols, and vicinal diamines. Control experiments and mechanistic studies proved the radical pathway in the reaction process. The DFT calculations showed that the azido transferred to the radical intermediate via an intramolecular five-membered transition state with the internal nitrogen of the Fe-N3 species.

Palladium-catalyzed synthesis of α-aryl acetophenones from styryl ethers and aryl diazonium saltsviaregioselective Heck arylation at room temperature

Kandasamy, Jeyakumar,Lee, Yong Rok,Singh, Adesh Kumar,Venkatesh, Rapelly

supporting information, p. 7832 - 7837 (2021/09/28)

Preparation of α-aryl acetophenones from styryl ethers and aryldiazonium salts is described. The reaction is catalyzed by palladium acetate at room temperature in the absence of ligand and base. The developed method is highly attractive in terms of reaction conditions, substrate scope, functional group tolerance and yields. Synthetic applications of the present method are demonstrated by preparing α-aryl indoles and 3-aryl isocoumarin from styryl ethers.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 347-84-2