Welcome to LookChem.com Sign In|Join Free

CAS

  • or

399-10-0

Post Buying Request

399-10-0 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

399-10-0 Usage

Chemical Properties

light yellow powder

Uses

4''-Fluorochalcone

Check Digit Verification of cas no

The CAS Registry Mumber 399-10-0 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 3,9 and 9 respectively; the second part has 2 digits, 1 and 0 respectively.
Calculate Digit Verification of CAS Registry Number 399-10:
(5*3)+(4*9)+(3*9)+(2*1)+(1*0)=80
80 % 10 = 0
So 399-10-0 is a valid CAS Registry Number.
InChI:InChI=1/C15H11FO/c16-14-9-7-13(8-10-14)15(17)11-6-12-4-2-1-3-5-12/h1-11H

399-10-0SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 11, 2017

Revision Date: Aug 11, 2017

1.Identification

1.1 GHS Product identifier

Product name 4'-Fluorochalcone

1.2 Other means of identification

Product number -
Other names 4'-FLUOROCHALCONE

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:399-10-0 SDS

399-10-0Relevant articles and documents

Pharmacophore hybridization approach to discover novel pyrazoline-based hydantoin analogs with anti-tumor efficacy

Upadhyay, Neha,Tilekar, Kalpana,Loiodice, Fulvio,Anisimova, Natalia Yu.,Spirina, Tatiana S.,Sokolova, Darina V.,Smirnova, Galina B.,Choe, Jun-yong,Meyer-Almes, Franz-Josef,Pokrovsky, Vadim S.,Lavecchia, Antonio,Ramaa

, (2020/12/21)

In search for new and safer anti-cancer agents, a structurally guided pharmacophore hybridization strategy of two privileged scaffolds, namely diaryl pyrazolines and imidazolidine-2,4-dione (hydantoin), was adopted resulting in a newfangled series of compounds (H1-H22). Herein, a bio-isosteric replacement of “pyrrolidine-2,5-dione” moiety of our recently reported antitumor hybrid incorporating diaryl pyrazoline and pyrrolidine-2,5-dione scaffolds with “imidazoline-2,4-dione” moiety has been incorporated. Complete biological studies revealed the most potent analog among all i.e. compound H13, which was at-least 10-fold more potent compared to the corresponding pyrrolidine-2,5-dione, in colon and breast cancer cells. In-vitro studies showed activation of caspases, arrest of G0/G1 phase of cell cycle, decrease in the expression of anti-apoptotic protein (Bcl-2) and increased DNA damage. In-vivo assay on HT-29 (human colorectal adenocarcinoma) animal xenograft model unveiled the significant anti-tumor efficacy along with oral bioavailability with maximum TGI 36% (i.p.) and 44% (per os) at 50 mg/kg dose. These findings confirm the suitability of hybridized pyrazoline and imidazolidine-2,4-dione analog H13 for its anti-cancer potential and starting-point for the development of more efficacious analogs.

Multi-target weapons: diaryl-pyrazoline thiazolidinediones simultaneously targeting VEGFR-2 and HDAC cancer hallmarks

C S, Ramaa,Kumar, Alan P.,Meyer-Almes, Franz-Josef,Safuan, Sabreena,Schweipert, Markus,Tilekar, Kalpana,Upadhyay, Neha

, p. 1540 - 1554 (2021/10/26)

In anticancer drug discovery, multi-targeting compounds have been beneficial due to their advantages over single-targeting compounds. For instance, VEGFR-2 has a crucial role in angiogenesis and cancer management, whereas HDACs are well-known regulators o

Potassium Base-Promoted Diastereoselective Synthesis of 1,3-Diols from Allylic Alcohols and Aldehydes through a Tandem Allylic-Isomerization/Aldol–Tishchenko Reaction

Sai, Masahiro

supporting information, p. 4053 - 4056 (2021/10/25)

This study reports the first base-promoted aldol–Tishchenko reactions of allylic alcohols with aldehydes initiated by allylic isomerization. The reaction enables the diastereoselective synthesis of a variety of 1,3-diols with three contiguous stereogenic centers. Unlike commonly reported systems, our method allows the use of readily available allylic alcohols as nucleophiles instead of enolizable aldehydes and ketones.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 399-10-0