Welcome to LookChem.com Sign In|Join Free

CAS

  • or

896-89-9

Post Buying Request

896-89-9 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

896-89-9 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 896-89-9 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 8,9 and 6 respectively; the second part has 2 digits, 8 and 9 respectively.
Calculate Digit Verification of CAS Registry Number 896-89:
(5*8)+(4*9)+(3*6)+(2*8)+(1*9)=119
119 % 10 = 9
So 896-89-9 is a valid CAS Registry Number.

896-89-9SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 20, 2017

Revision Date: Aug 20, 2017

1.Identification

1.1 GHS Product identifier

Product name (4-methoxyphenyl)methyl-diphenylphosphane

1.2 Other means of identification

Product number -
Other names p-Anisyldiphenylphosphine

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:896-89-9 SDS

896-89-9Relevant articles and documents

Electron-rich triarylphosphines as nucleophilic catalysts for oxa-Michael reactions

Boese, A. Daniel,Fischer, Susanne M.,Renner, Simon,Slugovc, Christian

supporting information, p. 1689 - 1697 (2021/08/03)

Electron-rich triarylphosphines, namely 4-(methoxyphenyl)diphenylphosphine (MMTPP) and tris(4-trimethoxyphenyl)phosphine (TMTPP), outperform commonly used triphenylphosphine (TPP) in catalyzing oxa-Michael additions. A matrix consisting of three differently strong Michael acceptors and four alcohols of varying acidity was used to assess the activity of the three catalysts. All test reactions were performed with 1 mol % catalyst loading, under solvent-free conditions and at room temperature. The results reveal a decisive superiority of TMTPP for converting poor and intermediate Michael acceptors such as acrylamide and acrylonitrile and for converting less acidic alcohols like isopropanol. With stronger Michael acceptors and more acidic alcohols, the impact of the more electron-rich catalysts is less pronounced. The experimental activity trend was rationalized by calculating the Michael acceptor affinities of all phosphine-Michael acceptor combinations. Besides this parameter, the acidity of the alcohol has a strong impact on the reaction speed. The oxidation stability of the phosphines was also evaluated and the most electron-rich TMTPP was found to be only slightly more sensitive to oxidation than TPP. Finally, the catalysts were employed in the oxa- Michael polymerization of 2-hydroxyethyl acrylate. With TMTPP polymers characterized by number average molar masses of about 1200 g/mol at room temperature are accessible. Polymerizations carried out at 80°C resulted in macromolecules containing a considerable share of Rauhut-Currier-type repeat units and consequently lower molar masses were obtained.

Palladium-Catalyzed C-P(III) Bond Formation by Coupling ArBr/ArOTf with Acylphosphines

Chen, Xingyu,Wu, Hongyu,Yu, Rongrong,Zhu, Hong,Wang, Zhiqian

, p. 8987 - 8996 (2021/06/30)

Palladium-catalyzed C-P bond formation reaction of ArBr/ArOTf using acylphosphines as differential phosphination reagents is reported. The acylphosphines show practicable reactivity with ArBr and ArOTf as the phosphination reagents, though they are inert to the air and moisture. The reaction affords trivalent phosphines directly in good yields with a broad substrate scope and functional group tolerance. This reaction discloses the acylphosphines' capability as new phosphorus sources for the direct synthesis of trivalent phosphines.

Synthesis method of phosphine (III) compound

-

Paragraph 0020, (2021/11/27)

The invention aims to provide an aryl phosphine oxide compound as a raw material, wherein P=O keys are activated by an acid anhydride and alkali is continued. The preparation of the phosphine (III) compound is carried out under the action of a crown ether and a reducing agent. The method has the advantages of cheap and easily available raw materials, simple operation, high atomic economy and the like. Compared with a traditional reduction mode, the method is ingenious in design, waste emission is reduced, separation of intermediate products is omitted, and related reagents such as silicon hydrogen, aluminum, boron and the like with higher price can be avoided. And the reaction suitability is extensive.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 896-89-9