Home > News > Stronger than nature: Optimized radicals as potential novel catalysts

Stronger than nature: Optimized radicals as potential novel catalysts

March 18, 2024

The enzyme of present interest is galactose oxidase found in many types of fungi, where a phenoxyl radical is used as the oxidant. The team led by HU researcher Kallol Ray has now found a way to utilize the phenoxyl radical in the laboratory in such a way that the oxidation capacity can be increased significantly.

The research results of Ray and his team are of great importance for both research and application, as the reaction catalyzed by galactose oxidase (oxidation of a primary alcohol to the corresponding aldehyde) is one of the most important and most widely used chemical reactions in organic synthesis.

The findings could also be used in industry to convert the climate-damaging gas methane into liquid methanol. Unlike methane, which is a volatile gas and therefore difficult to handle, methanol is easy to transport and can be used as a synthetic fuel. Currently, a great deal of energy is required to convert methane into methanol. The chemical reaction takes place only at high temperatures (> 500 degree Celsius) and under high pressure. Biomimetic catalysts could significantly reduce this energy input.

Copyright © 2008-2024 LookChem.com All rights reserved.